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a b s t r a c t 

The estimation of functional connectivity between regions of the brain, for example based on statistical dependencies between the time series of activity in each 

region, has become increasingly important in neuroimaging. Typically, multiple time series (e.g. from each voxel in fMRI data) are first reduced to a single time series 

that summarises the activity in a region of interest, e.g. by averaging across voxels or by taking the first principal component; an approach we call one-dimensional 

connectivity. However, this summary approach ignores potential multi-dimensional connectivity between two regions, and a number of recent methods have been 

proposed to capture such complex dependencies. Here we review the most common multi-dimensional connectivity methods, from an intuitive perspective, from a 

formal (mathematical) point of view, and through a number of simulated and real (fMRI and MEG) data examples that illustrate the strengths and weaknesses of 

each method. The paper is accompanied with both functions and scripts, which implement each method and reproduce all the examples. 
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. Introduction 

Neuroimaging research has demonstrated that the characterisation
f functional interactions among regions of the brain is vital for a deeper
omprehension of the brain’s functioning. Indeed, some have claimed
hat cognitive functions are more closely related to the synergic coop-
ration among brain regions than to responses in individual brain re-
ions ( Bressler and Menon 2010 ). Functional connectivity is normally
nferred by analysing the statistical dependency between time series
e.g. fMRI, EEG or MEG signals) associated with regions of interest
ROIs). There are many different methods for estimating this depen-
ency (e.g. Hipp et al., 2012 ; Bressler and Seth, 2011 ; Van Den Heuvel
t al. 2010 ; Stam et al., 2007 ; Nolte et al., 2004 ; Lachaux et al.,
999 ; Biswal et al., 1995 ). However, one aspect is ignored in most of
hese methods: the fact ROIs are typically composed of multiple vox-
ls whose associated time series contain important information about
he complex dependencies among the regions themselves. A concern
s that this information is potentially lost when reducing the original
ulti-dimensional data to a representative one-dimensional time series

 Basti et al., 2018 ). This concern has led to the development of vari-
us “multi-dimensional connectivity ” methods. Note that these methods
ave also been called “multivariate connectivity ” (e.g. Anzellotti and
outanche 2018 ; Geerligs et al., 2016 ), but the latter term may also refer
o the estimation of multiple (one-dimensional) connections between all
airs of ROIs within a network, e.g. exploiting multivariate autoregres-
ive modelling ( Baccala and Sameshima, 2001 ; Harrison et al., 2003 ); so
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o avoid confusion, we use “multi-dimensional connectivity ” here to re-
er to the estimation of a single, pairwise connection between two ROIs,
ut where those ROIs consist of multiple measurements (e.g. voxels). 

While Anzellotti and Coutanche (2018) provided an informal and
istorical review of various multi-dimensional connectivity methods,
ur approach here is more pedagogical, in providing 1) some toy (2D)
xamples that help in illustrating some of the main concepts, such as
apping from voxel-space to pattern-distance space, 2) a formal (i.e.
athematical) definition of the main methods, 3) a number of simula-

ions that illustrate the strengths and weaknesses of each method, 4)
mpirical examples (on both fMRI and MEG data) and 5) a traditional
ummary with “ten rules ” for conducting multi-dimensional connectiv-
ty analysis. All of the examples are accompanied by MATLAB functions,
ncluding implementation of each metric used, which are available here:
ttps://github.com/RikHenson/MultivarCon/. 

. Simple 2D illustration 

The purpose of this section is to provide an intuitive understanding
f some of the methods and concepts, before their formal description
n the next section. The MATLAB script that can be used to reproduce
hese results is Example2D.m . 

Consider a simple case with two ROIs with 𝑁 𝑋 = 𝑁 𝑌 = 2 voxels and
 𝑡 = 4 time points. Fig. 1 A–C shows the data plotted for each ROI, where

ach axis ( x, y ) represents one voxel, and the four time points are num-
ered. In Fig. 1 A, the dominant variance (between points 1 or 2 and 3 or
) in both ROIs is along the direction 𝑦 = 𝑥 . Since averaging across the
wo voxels is equivalent to projecting onto the line 𝑦 = 𝑥 , simple averag-
 2020 
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Fig. 1. Toy example with 2 voxels in each of 2 ROIs, with each voxel providing data for 4 time points. Panels A-C show three different patterns of (actual and 

transformed) data, while Panel D shows the similarity across voxels between every pair of time points in panel C (a so-called “RDM ”; see Section 2.1.4). In Panel A 

the dominant variance between points 1 or 2 and 3 or 4 in both ROIs is along 𝑦 = 𝑥 , while in Panel B the dominant direction in ROI2 is orthogonal to that in the first 

ROI. Unlike in the previous two panels, in Panel C there is a considerable variance along more than one direction, causing the one-dimensional connectivity methods 

to perform worse than multi-dimensional connectivity ones. 
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ng within each ROI followed by correlation across ROIs reveals a Pear-
on’s correlation coefficient of 𝑅 = 1 . Thus, this is a situation where the
urrently-dominant approach of one-dimensional connectivity, based on
he mean ROI response, works well. By contrast, consider the case in
ig. 1 B, where the data in ROI2 are reflected across the y -axis with re-
pect to those in ROI1, i.e. the dominant direction of variance in ROI2
s now orthogonal to that in ROI1. When the data are averaged across
oxels, the projection of the data in ROI2 onto the line 𝑦 = 𝑥 produces
 different order of time point values than when the same projection is
one in ROI1, such that the resulting Pearson correlation is 𝑅 = 0 . 

One common solution to this problem is to summarise the ROI’s time
eries by their first temporal mode (or “eigenvector ”), rather than their
verage. The temporal mode can be calculated using a singular-value
ecomposition (SVD) of the ROI’s matrix of voxels-by-timepoints (SVD
s also the basis of principal component analysis). A SVD is defined for-
ally in the next section, but it basically provides the direction (in voxel

pace) that captures the dominant variance in the data, and the tempo-
al mode is the projection of the data onto that direction. In the current
xample, the data are projected onto 𝑦 = 𝑥 for ROI1 (i.e. the first tem-
oral mode is identical to the average for this ROI), but for ROI2, the
ata are projected onto 𝑦 = − 𝑥 instead. Now, the relative ordering of
ime points on these two principal axes then becomes the same, so the
earson correlation is now 𝑅 = 1 again (if the direction of the principal
xis is towards the upper left 2 ). 

Fig. 1 C shows the most important case where no one-dimensional
onnectivity method works, and a multi-dimensional connectivity
ethod is needed. This is because reducing the data to one dimension

even using SVD) does not capture important dependencies between the
wo ROIs. In particular, the first principal direction for ROI1 is again
long the line 𝑦 = 𝑥 , even though there is also considerable variance
2 The sign of the singular vectors following SVD is somewhat arbitrary, so 

an be flipped to produce correlations of either R = 1 or R = − 1. Thus, the SVD 

pproach normally means one does not care about the sign of the connectivity; 

ust its magnitude. 

3

m

 

m  

a  
long the orthogonal direction 𝑦 = − 𝑥 (between points 1 and 2). This
eans that, when projecting both ROIs onto 𝑦 = 𝑥 , the order of the four

ime points does not match, such that the Pearson correlation following
VD is 𝑅 = 0 . 04 . However, if you look more closely, you can still see
ome dependency between the ROIs in terms of the Euclidean distances
dissimilarities) between pairs of time points. For example, points 1 and
 are far apart in both ROIs, whereas points 3 and 4 are close together.
his becomes apparent when you calculate the distance (in voxel-space)
etween all pairs of time points to produce the 4 × 4 “representational
issimilarity matrices ” (RDMs) shown in Fig. 1 D. Although not identical,
hese (symmetric) matrices share properties like small (dark) values be-
ween time points 3 and 4, and relatively larger (lighter) values between
ime points 1 and 2. This means that when you calculate the Pearson
orrelation between these matrices (or just their upper right triangular
lements), the coefficient is reasonably high, 𝑅 = 0 . 48 . This projection
rom voxel space to “pattern-distance space ” (as expanded in the next
ection) is essentially the way that many multi-dimensional connectivity
ethods work, such that the correlation in pattern space can be higher

han in the original voxel space. In other words, even though the pat-
erns across voxels for each time point can differ dramatically between
OIs, the similarities between those patterns can be similar across ROIs.

Finally, the way that other connectivity measures identify the multi-
imensional statistical dependency in Fig. 1 C is by explicitly estimating
he (linear) transformation of the two axes that maximises the depen-
ency between the two ROIs, e.g. by considering both directions 𝑦 = 𝑥

nd 𝑦 = − 𝑥 in ROI1, in order to map the four points as closely as possi-
le onto the same four points on the (dominant axis) of 𝑦 = 𝑥 in ROI2.
ith this basic introduction in mind, we now introduce the main MD-

onnectivity measures more formally. 

. Formalisation of one- and multi-dimensional connectivity 

ethods 

In this section, we describe a range of one-dimensional (1D) and
ulti-dimensional (MD) connectivity methods, using both time-domain

nd frequency-domain measures. For the time-domain, we start with the



A. Basti, H. Nili and O. Hauk et al. NeuroImage 221 (2020) 117179 

Fig. 2. Estimating MD-connectivity via relationships between voxel patterns across time points (A) or across runs/trial (B). Panel A also illustrates explicit estimation 

of the multi-dimensional mapping between ROIs X and Y by training on one set of runs and testing on another (cross-validation), while Panel B illustrates an alternative 

of correlating pattern similarity kernels (e.g. representational dissimilarity matrices, RDMs; see text). The superscripts and subscripts for each time series denote 

runs/trials and voxels, respectively. 
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3 In principle, SVD is a way of providing an alternative (orthogonalised) rep- 

resentation of the data, but in functional connectivity it is usually applied for 

the purpose of dimensionality reduction. 
wo 1D-connectivity methods described in the previous section, namely
 temporal correlation between the single time series resulting after ei-
her taking the average or first temporal mode across voxels. We then
onsider five different, time-domain MD-connectivity methods: “canon-
cal correlation ” ( Hotelling 1936 ), “multivariate pattern dependence ”
 Anzellotti et al., 2017b ), “distance correlation ” ( Geerligs et al. 2016 ),
representational connectivity analysis ” ( Kriegeskorte et al., 2008 ) and
linearly predicted representational dissimilarity ” ( Basti et al., 2019 ).
hese represent the prototypical cases of all the major methods, of
hich we are aware, that have been proposed and currently used in

MRI. For the frequency-domain, we focus on phase-coupling methods.
n particular, we define two 1D phase-coupling methods, i.e. “imagi-
ary coherency ” ( Nolte et al., 2004 ) and “lagged coherence ” ( Pascual-
arqui, 2007 a), and their MD-generalisations termed “multivariate in-

eraction measure ” ( Ewald et al., 2012 ) and “multivariate lagged coher-
nce ” ( Pascual-Marqui, 2007 b). These are the main MD phase-coupling
ethods of which we are aware. Nonetheless it would also be possible to

onsider amplitude-based methods or information-theoretic approaches
hat do not disentangle between phase- and pure amplitude coupling
 Barrett et al., 2010 ). 

As shown in Fig. 2 , let the two ROIs be called X and Y , associated
ith two multiple time series composed of N X and N Y spatially-distinct

ignals, respectively. The signals within each ROI might correspond, for
xample, to voxels in an fMRI experiment, or source-reconstructed cor-
ical vertices in a MEG experiment, or discrete electrodes in an extracra-
ial or intracranial EEG experiment; though we call them “voxels ” be-
ow for simplicity. The time points might be real-time samples, or they
ould also be estimates of event-related responses to successive trials
n an fMRI experiment, or the same pre-stimulus time across successive
rials in an MEG/EEG experiment (later, we distinguish between anal-
ses based on continuous time series versus those based on multiple
rials, but for simplicity, we use the term “time points ” below). Thus,
he multiple time series associated with X and Y can be represented as
wo matrices whose rows and columns denote time points and voxels,
espectively. Below, we refer to the vector of values over voxels (at a
ingle time point) as a pattern. The presence of multiple runs is impor-
ant for some of the MD-connectivity metrics below, in which patterns
n one run are used to predict those in another run. 

.1. Time-domain methods 

We start with the case of a single time series for each voxel, as in
ig. 2 A. 

.1.1. Pearson correlation between two single time series 

To reduce the multiple time series across voxels to a single time se-
ies, the simplest summary is to take the mean across voxels. This is
he most common approach in the fMRI connectivity literature, and it
ssumes functional homogeneity within each ROI. If this assumption is
rue, the averaging enhances the signal-to-noise ratio (SNR). 

An alternative is to perform a singular value decomposition (SVD 

3 )
f the matrices X and Y , and use the first singular vector along the
ime dimension (first temporal mode) as a summary time series for
ach ROI (as is default for example in the SPM software package,
ww.fil.ion.ucl.ac.uk/spm ; see Friston et al., 2006 ). A SVD of the ma-

http://www.fil.ion.ucl.ac.uk/spm
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4 OLS and ridge regression are just two of many linear methods to capture a 

statistical dependency between two matrices, e.g. voxel-by-time point matrices 

in the case of MD-connectivity. Other classical approaches are canonical cor- 

relation analysis (CCA), partial least squares (PLS) and least absolute shrinkage 

and selection operators ( Kherif et al. 2002 , Tibshirani 1996 ); however, these are 

beyond the present remit. 
rix X is defined as: 𝑠𝑣𝑑 ( 𝑋 ) = 𝑈𝑆𝑉 ′, where, in this case, U is a ma-
rix whose columns are time series (temporal modes) and V is a matrix
hose columns are weights across voxels (spatial modes). The matrix
 is a diagonal matrix of “singular values ”, in which the square of the
iagonal elements relates to how much variance is explained by each
air of temporal and spatial modes, ordered from most to least. Thus,
he normalised value of the first singular value (normalised by the sum
f all singular values) indicates the portion of variance captured by the
rst temporal and spatial modes, i.e. how “successful ” the dimension
eduction has been. (Principal Component Analysis, PCA, is simply the
VD of the covariance matrix X ′ X .) In the example code provided, SVD
s implemented in the function dimreduction.m. 

If the ROIs are functionally homogeneous (i.e. contain identical sig-
al time series for each voxel, plus noise that is independent across vox-
ls), then the first spatial mode should give equal weight to each voxel,
uch that the first temporal mode is equivalent to the mean across vox-
ls. However, the advantage of SVD arises if the ROIs are not function-
lly homogeneous (as demonstrated in Section 2 , where the spatial mode
an give different weights (even different signs) to voxels, and thus the
rst temporal mode can be very different from the mean time series.
f course, one could use SVD to define ROIs in the first place, i.e. select
ontiguous voxels such that they do have a common time series (i.e. high
ormalised first singular value). While SVD might be appropriate (for di-
ectly defining or) in case of ROIs defined through functional/adaptive
pproaches (see e.g. Farahibozorg et al., 2018 for adaptive approaches
n MEG), it may not be appropriate if ROIs are defined a priori (e.g. based
n standard anatomical parcellations). Moreover, this SVD approach is
articularly valuable with signed data like in EEG/MEG, where the sign
f the data depends on the sensor or source orientation, which is often
ot of interest, and such that straight averaging can produce values close
o zero. 

Whichever way the dimensionality of the ROI data is reduced to one
imension, with time series represented by the vectors �̄� and �̄� , the sim-
lest measure of connectivity is the Pearson correlation: 

 = corr ( ̄𝑥 , ̄𝑦 ) = 

cov ( ̄𝑥 , ̄𝑦 ) 
σ�̄� σ�̄� 

, (1)

here cov and 𝜎 denote the covariance and the standard deviation, re-
pectively (nonparametric measures also exist, such the Spearman rank
orrelation). 

Another method that can be exploited in order to select the direc-
ion in the two ROIs along which to evaluate the Pearson correlation
s ”canonical correlation analysis ” (CCA, Hotelling 1936 ). Even if this
ethod applies a dimensionality reduction, it can be still considered as
 MD-connectivity method. Indeed, rather than averaging across vox-
ls or to applying a within-ROI SVD, CCA finds the two, single time
eries (termed “canonical variates ”), �̄� and �̄� , that have the maximal
D Pearson correlation (even if those time series do not capture the
ajority of variance within each ROI). That is, CCA evaluates �̄� = 𝑋𝑢

nd �̄� = 𝑌 𝑣 , where the two directions (termed “canonical vectors ”) are
 𝑢, 𝑣 ) = argma x ( ̃𝑢 , ̃𝑣 ) { corr ( 𝑋 ̃𝑢 , 𝑌 �̃� ) } . This can be achieved by taking a SVD
f the covariance matrix between X and Y ( Uurtio et al., 2017 ). Here
e use the correlation value between the first pair of canonical vari-
bles as a measure of the linear statistical dependency between X and Y ,
ut it is worth noting that other pairs of canonical variables (which are
ll orthogonal) could also be selected and considered (see Wang et al.,
020 for a broader application of CCA in neuroscience). 

By contrast, all the other (MD) connectivity methods below aim to
educe any dimension-reduction of the data, thus minimising the loss of
otential information. 

.1.2. Multivariate pattern dependence 

Multivariate pattern dependence (MVPD), as proposed by
nzellotti et al. (2017b) , estimates the statistical dependency be-

ween the two matrices of time series, e.g. how well the time series
n Y can be predicted using X . For linear dependence, the simplest
ay to do this is to use ordinary least squares (OLS) estimation, i.e.
ulti-dimensional regression, estimating (training) the regression
eights from one set of runs and testing these weights on the remaining

et of runs (i.e. cross-validation). 
Since OLS estimation entails matrix inversion, the product X ′ X needs

o be invertible, one requirement for which is that X has fewer (indepen-
ent) columns than rows, i.e. in this case, fewer voxels than time points.
f this is not the case, one can perform a SVD and retain only the first p
odes, where p is less than or equal to the number of time points (and
opefully where the p modes capture the majority of variance in X and
 ). 

For leave-one-run-out cross-validation, the first step is to concate-
ate the multiple time series across all the runs except one. For the sake
f simplicity, assume we have only two runs, and use the first for train-
ng and second for testing. If a SVD is applied to 𝑋 

r=1 and 𝑌 r=1 (the
uperscript “r = 1 ″ denotes the first run), then assume the dimension-
lity of the ROIs is reduced from N X to K X (and from N Y to K Y ). The
ransformation matrix T between 𝑋 

r=1 and 𝑌 r=1 (or between their di-
ensionality reduced version) is then estimated via OLS, i.e. by solv-

ng the minimization problem 𝑇 = argmi n 𝐵 { ||X 

r=1 B − Y 

r=1 || 2 
𝐹 
} , where

· ‖F denotes the Frobenius norm, defined as the square-root of the sum
f all the squared entries of the matrix. For this minimization problem
if it is well defined) there is a unique solution that can be written as
 = ( 𝑌 r=1 ) ′𝑋 

r=1 ( ( 𝑋 

r=1 ) ′𝑋 

r=1 ) −1 , where ( ⋅) −1 denotes the inverse opera-
ion. The idea behind MVPD is to apply the transformation T in order to
stimate the multiple time series 𝑌 r=2 = ( 𝑦 r=2 1 , … , 𝑦 r=2 

𝐾 𝑌 
) associated with

he left-out run via 𝑌 r=2 = 𝑋 

r=2 𝑇 . MVPD is then defined as the weighted-
verage across voxels and runs of the correlation coefficient between the
ctual single time series 𝑦 r=2 

𝑖 
and the estimated one, �̂� r=2 

𝑖 
, i.e. 

 

 

 

 

 

 

 

MVPD = 

1 
2 
∑
𝑖,𝑗 

corr 
(
𝑦 
𝑟 = 𝑗 
𝑖 

, ̂𝑦 
𝑟 = 𝑗 
𝑖 

)
𝑤 

𝑟 = 𝑗 
𝑖 

𝑤 

𝑟 = 𝑗 
𝑖 

= 

( 
σ
𝑦 
𝑟 = 𝑗 
𝑖 

) 2 
∑

𝑘 

( 
σ
𝑦 
𝑟 = 𝑗 
𝑘 

) 2 (2) 

The weights 𝑤 

𝑟 = 𝑗 
𝑖 

are given by the portion of the overall variance
xplained by the i -th single time series. One advantage of MVPD is that
he transformation between ROIs is explicitly represented as part of es-
imating connectivity. While a linear transformation has been assumed
bove, a different estimator (or nonlinear projection of the ROI data)
ould be used to estimate nonlinear transformations ( Anzellotti et al.,
017a ). 

More generally, one does not need to perform dimensionality reduc-
ion of each ROI first in order to apply OLS, but instead use a regularised
olution to the above minimization problem, such as ridge regression 4 

or example (see the Linearly Predicted Representational Dissimilarity
ethod below, Basti et al., 2019 ). This has the potential advantage of
etecting temporal components that covary strongly between X and Y,
ven if they only explain a small percentage of variance within X and Y
eparately (and therefore might be removed by the prior dimensionality
eduction). Both SVD and regularised approaches are implemented in
he associated function data2mvpd_lprd_fc.m . 

.1.3. Distance correlation 

Distance Correlation, dCor ( Székely et al., 2007 ; Geerligs et al. 2016 ),
s a MD-connectivity method that measures both linear and non-linear
ependencies between ROIs. Conceptually, if each time point is viewed
s a point in the N - and N -dimensional voxel spaces, dCor will indicate
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igh connectivity when a large distance between two time points within
ne space (ROI) is mirrored by a large distance between the same time
oints in the other space (ROI), and conversely when small distances in
ne space are mirrored by small distances in the other (as in Fig. 1 D). 

The first step is to compute the Euclidean distances between
ach pair of time points s and t in voxel-space, for each ROI, i.e.
 𝑋 ( 𝑡, 𝑠 ) = ||𝑋( 𝑡 ) − 𝑋( 𝑠 ) ||2 and 𝐵 𝑋 ( 𝑡, 𝑠 ) = ||𝑌 ( 𝑡 ) − 𝑌 ( 𝑠 ) ||2 . Second, a cor-

ection, called U-centring, is applied to the time-by-time distance matri-
es A X and B Y in order to ensure that the correlation estimates are not
iased by the different dimensions of the two ROIs. Finally, the distance
orrelation is defined as: 

Cor = 

√ 

max 
{
corr 

(
𝐴 𝑋 , 𝐵 𝑌 

)
, 0 
}

(3) 

here corr( A X , B Y ) is computed between the vectorised U-centred ma-
rices A X and B Y ; the term max{corr( A X , B Y ), 0} included in the above
quation ensures positive estimates. This is implemented in the function
ata2dcor.m . 

.1.4. Representational connectivity analysis (RCA) 

U-centring aside, dCor can be seen as a special case of representa-
ional connectivity analysis (RCA, Kriegeskorte et al., 2008 ). In RCA, a
dis)similarity metric is estimated between every pair of patterns (i.e.
etween every pair of time points/trials), and then dissimilarity values
or all pairwise comparisons are compared across ROIs. This resembles
he “kernel method ” ( Theodoridis and Koutroumbas, 1999 ) in machine-
earning, in which the original (voxel) data are transformed into a fea-
ure (pattern) space via a dissimilarity function (kernel). Indeed, dCor
s a special case of RCA when the dissimilarity measure is Euclidean dis-
ance. However, other measures of dissimilarity are also possible, such
s 1 minus the Pearson correlation (which is what we use here), or more
enerally, the Mahalanobis distance ( Mahalanobis 1936 ). 

The time point by time point matrices whose entries describe the
issimilarity (of voxel patterns) between each pair of time points are
alled Representational Dissimilarity Matrices (RDMs), as in Fig. 1 D.
he RCA between the RDMs for ROI X and Y, given by M X and M Y , is
imply the correlation between them: 

CA = corr 
(
𝑀 𝑋 , 𝑀 𝑌 

)
(4) 

here the correlation is computed between the vectorised upper (or
ower) matrices M X and M Y . This is implemented in the function
ata2rc.m . 5 

A related idea is to train a classifier to discriminate between the
atterns associated with, say, two classes of stimuli, in each ROI sepa-
ately (e.g. on one subset of runs), then compute each ROI’s classifier
erformance at each time point (in the remaining runs). The correla-
ion between the resulting classification performances of the two ROIs
cross time points can then be used to indicate whether the information
n the two ROIs is coupled ( “informational connectivity ”, Coutanche and
hompson-Schill 2013 ). Though this provides a narrow perspective on
hared information between the two regions (in that only one particular
istinction is being tested), it is potentially more powerful when a single
ypothesis is under consideration. 

One limitation with the RCA approaches (and hence with dCor as
ell) is that they do not explicitly estimate the transformation between

he pattern spaces represented within the ROIs. This leads to our last
ime-domain measure, the linearly predicted representational dissimi-
arity ( Basti et al., 2019 ). 

.1.5. Linearly predicted representational dissimilarity 

Finally, a time-domain measure that combines the estimation of the
ransformation between the multiple time series and the concept of rep-
5 Note that RCA could also be performed across runs, i.e. M X and M Y could 

orrespond to RDMs from two separate scanning runs. This is also implemented 

n the script, however, our simulations generate data independently in different 

uns and therefore are not suited for exploring between-run RCA. 

 

m  

b  

d  

t  
esentational connectivity is the linearly predicted representational dis-
imilarity (LPRD), defined in Basti et al. (2019) . Similar to MVPD, an
stimate of the matrix transformation T between the (Z-scored, i.e. de-
eaned and scaled by standard deviation) multiple time series X and
 can be obtained for each run by using regularised least-squares es-

imation, i.e. 𝑇 = argmi n 𝐵 
{ ||XB − 𝑌 ||2 2 + 𝜆||𝐵||F F } 

, where 𝜆 denotes a

egularisation parameter. When the norm F corresponds to the (Frobe-
ius) 2-norm of the matrix (ridge regression), there is a unique solution
o the estimation of the transformation 𝑇 = ( 𝑌 ) ′𝑋 ( 𝑋 

′𝑋 + 𝜆𝐼 𝑑 𝑋 ) −1 . The
egularization parameter 𝜆 can be obtained in several ways, including
nested) leave-one-out cross-validation. In this case, the optimal value is

= argmi n 𝛼
{ ∑

𝑡 ||𝑋( 𝑡 ) 𝐵 𝛼,𝑡 − 𝑌 ( 𝑡 ) ||2 2 } 

, where B 𝛼, t is the transformation

btained from ridge regression of the multiple time series X and Y , but
n which the t -th time point has been removed, and with a regularisation
arameter equal to 𝛼 ( Basti et al., 2019 ; Golub et al., 1979 ). 

Finally, LPRD is defined as the average (over runs) of the correla-
ion between the RDM M Y associated with the actual Y and the RDM
 

𝑌 
of the estimated 𝑌 (whose patterns 𝑌 ( 𝑡 ) , for every t , are defined as

 ( t ) T t with the subscript denoting the removal of the time point t in the
stimation of the transformation), i.e. 

PRD = corr 
(
𝑀 𝑌 , 𝑀 

𝑌 

)
(5) 

an across run approach similar to MVPD can be also performed). The
atter is implemented in the function data2mvpd_ lprd _fc.m . 

.2. Frequency-domain methods 

Continuing with the single time series per voxel in Fig. 2 A, we can
lso calculate connectivity in the frequency-domain instead. 

.2.1. Imaginary part of coherency 

The frequency-domain version of temporal correlation is coherence.
n particular, coherence can be thought as the magnitude of a normal-
zed version of the Fourier transform of the cross-covariance, i.e. the
ovariance between one time series and a second one shifted by l , over
ll the time-lags l ( Brillinger, 1981 ). The complex version of the coher-
nce, i.e. the one obtained without computing the magnitude, is simply
alled coherency ( Nolte et al., 2004 ). 

In the context of MEG/EEG data, the zero-lag component between
wo sensors or estimated sources can be artifactual, caused by field
pread from the same true source ( Marzetti et al., 2019 ). In the
requency-domain, this corresponds to phase differences of 0 or 𝜋, which
n terms of complex number representation corresponds to situations in
hich the imaginary component of coherency is 0. To exclude such pos-

ibly artifactual connections, a common proposal is to use only the imag-
nary part of coherency (ImCoh, Nolte et al., 2004 ), instead of relying on
ts magnitude, thus reducing the zero-lag contributions associated with
ts real part. Using the two single time series �̄� and �̄� above to refer to a
imensionality-reduced version of the multiple time series X and Y , the
mCoh at a frequency of interest f is defined as: 

mCoh = ℑ 

( 

𝑐 �̄� , ̄𝑦 ( 𝑓 ) √
𝑐 �̄� , ̄𝑥 ( 𝑓 ) 𝑐 �̄� , ̄𝑦 ( 𝑓 ) 

) 

, (6)

here ℑ ( · ) is the imaginary part of a complex number and e.g. 𝑐 �̄� , ̄𝑦 ( 𝑓 )
enotes the Fourier transform (at frequency f ) of the cross-covariance
etween �̄� and �̄� (the so called cross-spectrum). Note ImCoh is still a
D-connectivity measure (and can be combined with a SVD to reduce
ach ROI time series to one dimension). 

.2.2. Multivariate interaction measure 

The generalisation of ImCoh to MD-connectivity has been called a
ultivariate interaction measure (MIM, Ewald et al., 2012 ). MIM can

e applied directly to X and Y without the need of dimensionality re-
uction. Let C XY ( f ) be the cross-spectral matrix between X and Y , i.e.
he matrix whose entry in the i -th row and the j -th column denotes the
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6  
ross-spectrum, 𝑐 𝑥 𝑖 𝑦 𝑗 ( 𝑓 ) , between the single time series x i and y j . MIM
s thus defined as: 

IM = 𝑇 𝑟 

((
𝐶 

ℜ 

𝑋𝑋 
( 𝑓 ) 

)−1 
𝐶 

ℑ 
𝑋𝑌 

( 𝑓 ) 
(
𝐶 

ℜ 

𝑌 𝑌 
( 𝑓 ) 

)−1 (
𝐶 

ℑ 
𝑋𝑌 

( 𝑓 ) 
)′)

(7)

here ( ⋅) ℜ and ( ⋅) ℑ are the real and the imaginary parts of the cross-
pectral matrices, and Tr( · ) is the trace of a matrix, i.e. the sum of
he diagonal entries. Similar to ImCoh, MIM also avoids inflation of the
stimated values caused by artificial zero-lag connectivity. Moreover,
ts value is invariant under rotation of the data X and Y , making MIM
ndependent from the choice of the physical reference frame (e.g. for
ource-localised MEG/EEG data). 6 

.2.3. Lagged coherence 

Similar to imaginary coherency, Pascual-Marqui, 2007 a introduced
he lagged coherence (LagCoh) as a method that, by completely remov-
ng the zero-lag contributions from the signals, is only sensitive to lagged
oupling. LagCoh is defined as: 

agCoh = 

[
ℑ ( 𝑐 �̄� , ̄𝑦 ( 𝑓 ) ) 

]2 
𝑐 �̄� , ̄𝑥 ( 𝑓 ) 𝑐 �̄� , ̄𝑦 ( 𝑓 ) − 

[
ℜ ( 𝑐 �̄� , ̄𝑦 ( 𝑓 ) ) 

]2 , (8)

here ℜ ( · ) is the real part of a complex number. Indeed, this formula-
ion is equivalent to the corrected imaginary coherence ( Ewald et al.,
012 ). Note that there are yet other phase-coupling methods, such
s imaginary part of the phase locking value ( Palva and Palva 2012 ;
achaux et al., 1999 ) or weighted and unweighted phase lag index
 Vinck et al., 2011 ; Stam et al., 2007 ), but they do not yet have multi-
imensional generalisations. 

.2.2. Multivariate lagged coherence 

We call the multi-dimensional generalisation of LagCoh “multivari-
te lagged coherence ” (MVLagCoh, Pascual-Marqui, 2007 b), defined as:

VLagCoh = ln 
det 

( 
ℜ 

[ 
𝐶 𝑌 𝑌 ( 𝑓 ) 𝐶 𝑌 𝑋 ( 𝑓 ) 
𝐶 𝑋𝑌 ( 𝑓 ) 𝐶 𝑋𝑋 ( 𝑓 ) 

] ) 
∕ det 

( 
ℜ 

[ 
𝐶 𝑌 𝑌 ( 𝑓 ) 0 

0 T 𝐶 𝑋𝑋 ( 𝑓 ) 

] ) 
det 

( [ 
𝐶 𝑌 𝑌 ( 𝑓 ) 𝐶 𝑌 𝑋 ( 𝑓 ) 
𝐶 𝑋𝑌 ( 𝑓 ) 𝐶 𝑋𝑋 ( 𝑓 ) 

] ) 
∕ det 

( [ 
𝐶 𝑌 𝑌 ( 𝑓 ) 0 

0 T 𝐶 𝑋𝑋 ( 𝑓 ) 

] ) (9)

here 0 is a matrix of zeros and det( · ) indicates the determinant of a
atrix. Similar to its 1D-version, it is sensitive to (linear) lagged interac-

ions but insensitive to instantaneous coupling; in fact, the denominator
f the above equation characterises that instantaneous coupling. Like
IM, MVLagCoh is invariant under rotation of X and Y . Since MVLag-
oh is not bounded (unlike the other connectivity measures above), we
se a bounded version here, i.e. 1 − 1∕ exp ( MVLagCoh ) . 

.3. Similarity of patterns between runs/trials for each time point 

Thus far, we have estimated a single measure of connectivity by us-
ng multiple time points (replications) – what might be called static con-
ectivity ( Fig. 2 A). Of course, one could use moving time windows to
stimate connectivity changes over time. However, another common ap-
roach is to leverage the fact that, particularly in trial-based EEG/MEG
xperiments and single-cell recordings, there can be multiple trials, each
ontaining the same time points with respect to the onset of a trial
e.g. epochs of − 100 ms to + 500 ms locked to stimuli presented every
000 ms). In this case, one can take a single time point, and construct a
DM of similarities between all pairs of trials/stimuli for that time point
6 Interestingly, there is a strong mathematical relation between MIM and CCA 

 Kherif et al. 2002 , Hotelling 1936 ). Indeed, most of the linear algebra steps used 

n Ewald et al. (2012) to introduce MIM matrix (i.e. the matrix prior the appli- 

ation of the trace operator) from the real part of cross-spectrum can be directly 

pplied to the covariance for defining the canonical correlation matrix between 

he so-called canonical vectors. Thus, the application of the trace operator to 

his canonical correlation matrix defines a further time-domain measure of the 

otal multi-dimensional (linear) statistical dependency between two sets of time 

eries (i.e. a time-domain version of MIM). 
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c  
 Fig. 2 B). In other words, one can calculate the RCA between the RDMs
or a single time point and repeat across time points in order to con-
truct a time series of dynamic connectivity between ROIs. Indeed, once
ne has a single time series of MD-connectivity, one can even use tech-
iques like Granger causality on the two RCA time series, to infer which
OI is “driving ” the other ROI ( Goddard et al., 2016 ; Kietzmann et al.,
019 ). Alternatively, one can correlate each ROI’s RDM at a given time
oint with an independent (model-based) RDM – based on, for exam-
le, a theoretical division of stimuli into two classes, akin to the “infor-
ational connectivity ” ( Coutanche and Thompson-Schill, 2013 ) men-

ioned earlier – thereby producing a single time series for each ROI that
aptures the similarity of that ROI’s pattern with the theoretical RDM,
.g. tracks out the dynamics of when a theoretically-relevant distinction
merges. 

More generally, the above examples illustrate the flexibility of
attern-based approaches. Thus, while measures like dCor and RCA con-
idered in the previous sections quantify the extent to which two regions
ave similar temporal dynamics, in terms of the geometries of the time
oints in each ROI’s voxel space, the same logic of correlating pattern
imilarity kernels (RDMs) can be applied to compare the geometry of
oints in each ROI’s voxel space when each point now reflects a run,
rial or stimulus, rather than time point. 

In the next section, we will focus on some simulation cases, showing
ome possible pitfalls and caveats associated with all the above connec-
ivity methods. 

. Simulation examples 

The purpose of this section is to illustrate some of the advantages
nd disadvantages associated with the MD-connectivity metrics defined
bove. The MATLAB script for all examples is demo.m in https://github.
om/RikHenson/MultivarCon . 

For the first seven examples, the time series in the ROI2 for the r -th
un, Y 

r , is a function of those in the ROI1, X 

r , i.e. for each time point
 : 𝑌 𝑟 ( 𝑡 ) = 𝑓 ( 𝑋 

𝑟 ( 𝑡 ) , 𝑇 𝑟 ) , where T r is the functional mapping that may, or
ay not, change across runs. For linear mappings, f is a multiplication

nd T r is a N X × N Y matrix, leading to 𝑌 𝑟 ( 𝑡 ) = 𝑋 

𝑟 ( 𝑡 ) 𝑇 𝑟 . Finally, to simu-
ate measurement noise, independent Gaussian noise ( E r ) with mean of
 and standard deviation equal to 𝜎 is added to both X 

r ( t ) and Y 

r ( t ). 
An important property of the voxels in ROI1 (that in our examples

re being mapped to ROI2) is the covariance matrix of their time se-
ies, C 

r . If this matrix is such that the time series are highly positively
orrelated between all pairs of voxels, i.e. the ROI is functionally homo-
eneous (or the data are spatially smooth), then the mean time series
ver voxels can be a sufficient summary of activity in that ROI. Indeed,
f there is additional independent noise on each time series in a ROI,
hen averaging is an effective way of attenuating that noise. If the voxel
ime series in the ROI2 are also positively correlated (which here de-
ends on the properties of the functional mapping, T r , e.g. whether a
niform mapping), then connectivity can be captured by a 1D metric,
s shown in Example 1. However, if ROI1 is not functionally homoge-
eous, or if the functional mapping is not uniform, then the remaining
xamples illustrate the merits of using multi-dimensional connectivity
etrics instead. 

For the first six examples below, we assume 50 voxels for ROI1 and
0 for the ROI2, each with 400 time points, generated for two indepen-
ent runs (we need more than one run in order to estimate MVPD). In
he last example, we assume 12 voxels for ROI1 and 10 for the ROI2,
ach with 2 runs of 15,360 time points. We simulated data from 20 par-
icipants with the measurement noise in both ROIs having a standard
eviation of 1, i.e. 𝜎 = 1 . 

.1. Positively correlated activities in ROI1 and one-to-one voxel mapping 

Fig. 3 A shows a covariance matrix for ROI1 that produces positively
orrelated time series, while Fig. 3 B shows a mapping matrix that pro-

https://github.com/RikHenson/MultivarCon


A. Basti, H. Nili and O. Hauk et al. NeuroImage 221 (2020) 117179 

Fig. 3. We simulated a one-to-one voxel mapping in which every voxel in ROI1 has a clone (except for an additive noise component) in ROI2. Panel A shows the 

covariance matrix of ROI1. Panel B shows the functional mapping between the two regions. Panel C and D show the first 50 time points of two voxels in each ROI 

and their correlation. Panel E and F respectively show the unnormalised and normalised mean (and standard deviation) values for the connectivity methods across 

the 20 simulated subjects. The high covariance amongst the voxels of ROI1 leads to intrinsic low dimensional time series, and thus to higher performance of the 

one-dimensional connectivity methods than the multi-dimensional connectivity ones. 
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uces a linear one-to-one mapping between the N X voxels in ROI1 and
he first N X of the N Y voxels in ROI2 (with the remaining voxels in ROI2
herefore being just random noise). Fig. 3 C and 3 D show the first 50 time
oints of two voxels in each ROI and their positive correlation. Fig. 3 E
hows the mean values for the connectivity methods described in the
revious section, together with error bars for their standard deviation,
cross 20 simulated subjects (grey bars); the transparent blue bars show
he mean scaled by the standard deviation, analogous to a Z-statistic.
ig. 3 F shows their normalised values, which arise after subtracting the
ean value of each metric when there is no true connectivity and then
ormalising by the standard deviation of the null estimates. Removing
his potential bias is important because some of the metrics do not have
n expected value of 0 when there is no connectivity (e.g. dCor is always
ositive) and also different measures do not necessarily have the same
cale, thereby allowing effect sizes to be compared across the different
etrics. Similar to panel 3E, the transparent blue bars give the Z-statistic

or the normalised values which can be used to infer reliability of con-
ectivity across subjects (versus zero). For each simulated subject, this
ull-connectivity was estimated by computing the measures from null
ata obtained by permuting the time points randomly for every voxel
20 times). 7 

In terms of the basic (unnormalised) values ( Fig. 3 E), Pearson-CCA
nd both the two 1D metrics are best, achieving values close to 1.
7 Different time points were independent from each other in our simulations, 

owever, in real data there is often temporal autocorrelation. Random permut- 

ng of the time points does not preserve the temporal autocorrelation and there- 

ore permuting for real data should preserve this autocorrelation, e.g. by using 

ourier phase scrambling instead. 

 

p  

o  

l  

i  
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earson-CCA always selects the directions in the two ROIs that max-
mise the correlation and, in terms of raw performance, it does better
han the other two metrics by definition. Instead, the advantage of the
wo 1D-connectivity methods with respect to the other MD-connectivity
nes arises from the intrinsic low dimensionality of the signals gener-
ted by the high covariance among the voxels in ROI1, thus allowing
n enhancement of the SNR when using a dimensionality reduction ap-
roach. The SVD approach actually does better than simply taking the
verage: though the voxel weights of the first spatial mode in ROI1 are
airly uniform (analogous to taking the average), they can vary suffi-
iently to capture small differences in the randomly-drawn time points
hat make some time series more or less similar to others. This difference
s less evident when considering the normalised values ( Fig. 3 F). No-
ably, Pearson-CCA produces lower performance than 1D-connectivity
ethods, owing to an overestimation of the correlation in case of no

onnectivity. This behaviour will reoccur in some of the next examples.
hough the remaining MD-connectivity methods are not as sensitive as
he two 1D-connectivity methods in this low-dimensional case, they do
onetheless produce significant (non-zero) Z-statistics, i.e. also able in
rinciple to detect the presence of connectivity. 

.2. Anticorrelated activities within ROI1 and one-to-one voxel mapping 

Though the functional mapping is the same as the one used in the
revious example ( Fig. 4 B), this second example illustrates the presence
f two functional subdivisions within ROI1, which are negatively corre-
ated to one another, as indicated in Fig. 4 A. This pattern has been seen
n real fMRI data for example ( Geerligs et al. 2016 ), arising perhaps
hen the chosen ROIs do not respect the true functional anatomy of the
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Fig. 4. We simulated a one-to-one voxel mapping in which every voxel in ROI1 has a clone (except for an additive noise component) in ROI2. Panel A shows the 

covariance matrix of ROI1. Panel B shows the functional mapping between the two regions. Panel C and D show the first 50 time points of all the time series in each 

ROI. Panel E and F respectively show the unnormalised and normalised mean (and standard deviation) values for the connectivity methods across the 20 simulated 

subjects. In this case, ROI1 is composed of two anti-correlated subpopulations time series, such that simple averaging over voxels destroys the signal. However, by 

taking the first temporal mode from a SVD instead, connectivity can still be detected by a 1D Pearson’s correlation. 

b  

r  

r  

t  

s  

v  

p  

s  

t  

n  

c  

t  

m

4

 

s  

a  

s  

o  

l  

o  

C  

R  

b  

c
 

s  

t  

e  

n  

f  

d  

A  

h  

p  

s  

R  

b  

I  

s  

h  

a  

M  

s  

S
 

t  

t  

a  

f  

M  

t  

R  

s  

f  

h

rain. This “structure ” can be seen in Fig. 4 C-D, which show the time se-
ies (for the first 50 time points) for all voxels, now in an “image ” format,
ather than the line plots in Fig. 3 C-D. In this case, due to anticorrela-
ions, averaging over voxels in ROI1 (and ROI2) destroys most of the
ignal, leaving just noise, and so Pearson correlation between the mean
alues across voxels is close to zero ( Fig. 4 E-F). Taking the first tem-
oral mode from a SVD, however, recovers sensitivity. This is because
ome voxel weights of the dominant spatial mode are positive whereas
he other voxel weights are negative, such that the combined signal is
ot cancelled out. Nonetheless, the signal is still one dimensional (indi-
ated by the dominance of the first singular value of the SVD), meaning
hat the 1D-correlation is still more sensitive than the MD-connectivity
ethods. 

.3. Uncorrelated activities and multi-dimensional mapping 

Fig. 5 A shows a covariance matrix that produces uncorrelated time
eries in ROI1, while Fig. 5 B shows a functional mapping whose entries
re drawn randomly from a Gaussian distribution. The independent time
eries generated in ROI1 ( Fig. 5 C) and the time series in ROI2 ( Fig. 5 D)
btained through the application of the complex MD-mapping can no
onger be optimally reduced to a single time series by taking the average
r first temporal modes (better performance is obtained by Pearson-
CA, since the two single time series are not separately selected for each
OI, but rather chosen together by taking into account the covariance
etween ROIs). Thus, both 1D-connectivity methods performed poorly
ompared to all MD-connectivity methods ( Fig. 5 E and 5 F). 

We can use this example to compare the various metrics in their
ensitivity to noise (the number of time points is 400 and the size of
he two ROIs, X and Y, is 50 and 60, respectively). Fig. 6 A shows how
ach metric performs as the signal-to-noise ratio (SNR) increases (i.e.
oise decreases from left to right). The y-axis plots the normalized per-
ormance, such that the lines and shaded areas show the mean and stan-
ard error of the difference between true and null (permuted) values.
s expected, the 1D-connectivity methods perform poorly, though for
igh SNRs, they perform above chance, most likely because some de-
endency between the ROIs can still be captured by projecting onto a
ingle dimension. In this case, selecting only one single direction per
OI based on CCA is not sufficient to reach the performance obtained
y other MD-connectivity methods, which can use multiple dimensions.
nterestingly, dCor seems least sensitive to noise, and RCA is most sen-
itive to noise, while LPRD and MVPD show maximal performance at
igh SNRs. However, as apparent in subsequent examples below, there
re situations other than the current case of uncorrelated activities and
D-mapping (i.e. a fixed, linear mapping T plus random noise) where

ome MD-connectivity metrics are better than others, regardless of the
NR. 

Fig. 6 B shows the same normalized performance plotted now against
he number of time points (relative to the total number of voxels across
he two ROIs). Thus, for the same level of noise used in example 3 (i.e.
 SNR approximately equal to 1), this plot shows how the metrics per-
orm as the amount of data (duration of recording) increases. Again,
VPD does best when there are lots of data, but dCor can do better when

here is little data (at least relative to the size of the ROIs). Interestingly,
CA and LPRD seem relatively robust to the amount of data, while CCA
hows the greatest dependence on data duration, only approaching per-
ormance of the other metrics when the ratio of time points to voxels is
igh. 
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Fig. 5. In this example, the covariance matrix is the identity matrix that generates uncorrelated time series in ROI1. The functional mapping from ROI1 to ROI2 is 

generated such that its entries followed standard Gaussian distribution. The combination of these two features leads to low performance of both the 1D-connectivity 

methods, while the MD-connectivity methods obtained high performance. 

Fig. 6. Panel A shows normalised performance (true minus null) of each metric for Example 3 (uncorrelated activities and multi-dimensional mapping) as signal- 

to-noise ratio (SNR) increases left to right. SNR is defined as the variance of signal over the variance of noise. 0 corresponds to no signal and pure noise and very 

large SNR means that there is very little noise variance compared to signal variance. Panel B shows normalised performance as the ration between the number of 

time points and the total number of voxels in the two ROIs increases left to right. 
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.4. Multi-dimensional mapping that changes across runs 

This example is identical to the previous one – in that the voxel
ime series are uncorrelated ( Fig. 7 A) and the functional mapping is ran-
om ( Fig. 7 B) – except that the functional mapping now changes across
uns ( Fig. 7 B is an example from only one run). This might happen if
he voxel-wise sampling of the underlying neurons changes across runs,
.g. due to uncorrectable head motion, or if there are effects of learn-
ng across runs that change the functional connectivity. Alternatively, it
ight happen if different runs contain different stimuli (where each time
oint represents one trial with one stimulus, and there are complex in-
eractions between neurons in the two ROIs that depend on the specific
timuli). For example, in an experiment with both auditory and visual
timuli, it might well be the case that regions have different connectivity
or visual and for auditory stimuli. In any case, changes in T across runs
etrimentally affect MVPD, because the MD-mapping is trained on one
un and tested on others. However, the within-run measures of Pearson-
CA, dCor, RCA and LPRD remain sensitive ( Fig. 7 F). 
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Fig. 7. Inconsistent linear MD-mappings between the two regions cannot be detected by MVPD. In this example, like the previous one, the activity of each voxel in ROI2 is a 

weighted combination of activities of all voxels in ROI1 with some additive noise (destroying 1D-connectivity). Importantly the weights change for independent measurements, 

i.e. runs. Panel B shows the weights for one of the runs only (it would be different for any other run). This severely affects MVPD. However, distance correlation, RCA and 

LPRD can detect these types of interactions. 
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.5. Nonlinear mapping 

In Fig. 8 , we return to the positive voxel covariance in ROI1 ( Fig. 8 A)
nd the one-to-one functional mapping matrix T r ( Fig. 8 B) that were
sed in Example 1. However, the time series in ROI2 are now a non-
inear function of those in ROI1 and T r , here illustrated by taking the
bsolute value of X 

r ( t ) T r . Thus, whereas the time series in ROI1 ( Fig. 8 C)
re centred around zero, the time series in ROI2 ( Fig. 7 D) are generally
bove zero (except for the additive Gaussian noise). This now abolishes
onnectivity according to all measures but dCor, which can handle such
onlinearity ( Fig. 8 F). Note however that this is because dCor uses a Eu-
lidean metric of similarity of voxel-patterns between time points (trials)
if we change the similarity measure in RCA from (Pearson) correlation

o Euclidean, then RCA can also produce significant connectivity just
ike dCor. 

.6. Structured noise in ROI2 

In Fig. 9 , the functional mapping matrix ( Fig. 9 B) is identical to that
n Example 2. However, additional structured noise has been added to
OI2, which is identical across voxels (producing the coherent, vertical-
ar pattern in Fig. 9 D). This reduces performance of dCor ( Fig. 9 F),
hich uses a Euclidean measure of similarity between time points (tri-
ls), but e.g. not (the current version of) RCA, which uses a correlational
easure that is invariant to any constant offsets in the voxel-patterns.

tructured noise (that affects all voxels) can be present in real data due
o various reasons, such as subject movement or change in the subject’s
lertness/vigilance across time points. Another way to eliminate this
ould be to normalize (z-score) the activity patterns in each time point

across voxels) before computing connectivity measures. 
.7. Multi-dimensional lagged interaction 

Whereas the previous six examples showed some advantages and dis-
dvantages of connectivity methods in capturing the presence of instan-
aneous interaction between multidimensional signals, here we focus
n lagged interactions (e.g. when time point N in ROI2 depends on time
oint N-1 in ROI1). As explained in Section 2.2, coherency can capture
uch lagged interactions, of which imaginary coherency (ImCoh) and
agged coherence (LagCoh) are two frequency-dependent measures that
o not lead to artifactual phase-coupling due to zero-lag interactions
or more precisely, signals in phase or anti-phase) between sensors or
ources in MEG/EEG data. However, these two methods were originally
efined for pairs of single time series; the multivariate interaction mea-
ure (MIM) and multivariate lagged coherence (MVLagCoh) are their
xtensions that can capture multi-dimensional dependencies. 

For this example, the time series in ROI2 is a lagged function of ROI1,
.e. for each time point t , we have that 𝑌 𝑟 ( 𝑡 ) = 𝑋 

𝑟 ( 𝑡 − 𝜏) 𝑇 𝑟 . Here, 𝜏 de-
otes the time delay in the interaction, which we set to 𝜏 = 10 (which
.g. corresponds to ≈ 40 ms when the sampling frequency is set to
56 Hz). To reduce computation time, we assume 12 voxels for ROI1
nd 10 voxels for ROI2, each with 2 runs of 15,360 time points (typ-
cal for MEG/EEG). The elements of the transformation matrix T were
gain drawn randomly from a Gaussian distribution (like in examples 3–
 above). Finally, the zero-mean Gaussian additive measurement noise
 

r ( t ) was assumed independent across voxels with a standard deviation
qual to 0.1 (note that results similar to those described below can also
e obtained by using spatially-correlated noise, such as the one induced
y field spread/volume conduction in MEG/EEG). 

We compared MIM and MVLagCoh measures with ImCoh and Lag-
oh, with the latter applied to the first temporal modes of each ROI
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Fig. 8. In this example, the covariance matrix of ROI1 and the functional mapping is exactly the same as in Example 1. The only difference to Example 1 is that the 

mapping has an extra nonlinearity that is applied after the linear transformation (taking the absolute value). Only dCor can detect MD-relationships in this case. 

Fig. 9. The presence of structured noise in ROI2 (identical across voxels but changing across time points) causes 1D-connectivity measures and dCor and MVPD to 

perform poorly, though Pearson-RCA and LPRD can still successfully detect the connectivity of the two ROIs. 
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Fig. 10. The simulated multi-dimensional lagged interaction between ROIs means that the 1D-connectivity methods perform poorly. On the contrary, both MD- 

connectivity methods show good performance. 
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labelled ImCoh-SVD and LagCoh-SVD in Fig. 10 ). Unlike the MD-
onnectivity methods, both 1D-connectivity methods perform close to
hance. This is because projecting the time series onto a single dimen-
ion results in smaller, and thus less detectable, phase differences. Con-
ersely, MIM and MVLagCoh do not require the application of the di-
ensionality reduction and consider all the dimensions, thus resulting

n higher performance. In this specific example, MVLagCoh performance
vercomes the one obtained by MIM. However, it is possible that this
ifference is due to the specific simulation settings (e.g. type of noise
nd delay in the coupling). 

. Empirical examples 

We compared 1D and MD measures of connectivity on real fMRI
nd MEG resting-state data. These data came from the 20 youngest par-
icipants (aged 18–21) in the CamCAN cohort (www.cam-can.org) and
rom 100 randomly-chosen subjects in the Human Connectome Project
HCP) dataset (http://www.humanconnectome.org). The CamCAN par-
icipants only have 1 run (of fMRI and of MEG data), so are only used
elow for metrics that do not require cross-validation; the HCP partici-
ants have 4 runs (of fMRI data), so are used to test the cross-validated
etrics. 

The raw and preprocessed CamCan data are available on re-
uest here: (https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/),
hile the final ROI-based time series are available here ftp://ftp.mrc-

bu.cam.ac.uk/personal/rik.henson/MDcon/CamCAN. The fMRI data
nd MEG data were recorded (in separate sessions) while subjects rested
ith their eyes closed for approximately 8.5mins. We used the fMRI
ata to test the non-lagged (time-domain) connectivity metrics, and the
EG data to test the lagged (frequency-domain) metrics. Since we do not

now the ground truth when dealing with real data, we chose a measure
f quality as the difference between connectivity estimates for homol-
gous versus non-homologous connections between cortical ROIs: one
enerally expects higher connectivity between homologous ROIs. More
recisely, for each ROI in the left hemisphere, we compared its connec-
ivity to its homologous ROI in the right hemisphere, with the average
f connectivity estimates to all other right-hemisphere ROIs (note that,
ecause all our metrics are symmetrical, this is equivalent to compar-
ng each right-hemisphere ROI with all corresponding left hemisphere
OIs). We refer to this as the “homology score ”, with higher scores as-
umed to be better. More precisely, for the CamCAN data, we used this
pproach for the 48 cortical, anatomical ROIs in the Harvard-Oxford
tlas (HOA atlas, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). For the
CP data, given their much larger size, we focused (for computational

easons) on the connectivity between two, sub-cortical ROIs: left and
ight hippocampus, given that functional heterogeneity has been pro-
osed within the hippocampus (particularly along its anterior-posterior
xtent, Ranganath and Ritchey, 2012 ). 

.1. fMRI (zero-lag, time-domain) analyses 

.1.1. Non-cross-validated (single run) CamCAN results 

The CamCAN fMRI data consisted of 261 scans (time points) every
.97 s. The original images were corrected for motion and slice-timing,
arped to a standard MNI space and wavelet de-spiked (see Taylor et al.,
017 , for fuller description of acquisition details and preprocessing).
ime series were then extracted for each 3 × 3 × 3 mm voxel within
ach of the 96 cortical ROIs in the HOA, which typically varied from
5 to 1643 voxels (median = 230). The script for estimating the fMRI
onnectivity metrics is called “test_fmri.m ” in the GitHub directory. 

In order to compare across metrics, each metric was normalised by
0 phase-scrambled versions of the data, producing a Z-score (simi-
ar to what was done for simulations, though unlike the random per-
uting of time points done there, here the scrambling of phases pre-

erved the power spectrum, using the phase_rand.m function available
n the GitHub directory). The difference between (noise-normalised) ho-
ologous versus non-homologous connectivity estimates was calculated

or each participant. These homology scores were averaged over all 48
onnections, and divided by the standard deviation across subjects, as
hown in Fig. 11 A. As can be seen, all the metrics show a positive ho-
ology effect, as predicted, though the 1D Pearson correlation did best,
ith the MD dCor metric doing next best. Pearson-CCA did worst, which

s likely to reflect the relatively low number of time points, or more
pecifically, the low mean ratio across ROIs (0.57) of time points (261)
o voxels (2 × 230); see Fig. 6 B. 

Fig. 11 A only shows average performance across ROIs. To further ex-
lore these findings, instead of averaging over connections, we averaged
ver subjects, and calculated the connectivity metric that produced the
est (normalised) homology score for each of the 48 connections. The
esults are shown in Fig. 11 B, which reveal a somewhat different pat-
ern. The left axis shows the count of the number of ROIs for which
hat metric showed the highest normalised homology effect. As can be
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Fig. 11. Performance of the non-cross-validated, zero-lag (time-domain) metrics on the single run of fMRI data from 20 subjects in the CamCAN dataset. Panel A 

shows mean and standard deviation across subjects of the noise-normalized connectivity values (left axis) and corresponding Z-score across subjects (right axis). The 

left axis of Panel B shows the number of connections (out of 48) for which each metric produced the highest noise-normalised value (on average across subjects), 

while the right axis shows the average number of dimensions needed to capture 95% of the variance in the left hemisphere ROI associated with each connection. 
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Fig. 12. Performance of the time-domain metrics across 4 runs of fMRI data from 

100 subjects in the HCP dataset. See Fig. 11 A legend for more details. 
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een, Pearson-RCA had the highest score for the largest number of ROIs,
uggesting that, even if they do not do much better on average over
onnections, MD methods are better for an appreciable proportion of
OIs in this fMRI dataset. The right axis shows the mean number of
imensions required by a SVD to explain 95% of the variance in the
left-hemisphere) ROIs associated with the set of connections for which
hat metric does best. As expected, the ROIs for which the MD Pearson-
CA (and dCor) metric did best tended to have higher dimensionality

han those for which 1D Pearson did best. 

.1.2. Cross-validated (multiple runs) HCP results 

The HCP fMRI data consisted of 1200 scans acquired every 0.72 s
 Glasser et al., 2016 , for more details of acquisition and preprocess-
ng). The data were extracted from left and right hippocampus parcels
 Glasser et al., 2016 ). Voxel sizes were 2 mm isotropic and there were on
verage 230 (left) and 213 (right) voxels within the hippocampal ROIs.
hese data were used to test the MVPD metric that requires between-
un cross-validation (which was done four-fold across the four runs,
.e. leave-one-out), though non-cross-validated metrics were also in-
luded, and their within-run results just averaged over runs. Note that
he LPRD metric was not included because our implementation addi-
ionally requires leave-one (stimulus/time point)-out cross-validation
ithin-runs, which is difficult when time points within a run are highly
uto-correlated (in this case it is preferable to use other within-run
ross-validation approaches that take into account the temporal auto-
orrelation). While we do not know the relative SNR of the CamCAN
nd HCP datasets, it is worth noting (in relation to Fig. 6 B) that the
atio of time points to voxels in the HCP dataset (1200/443 = 2.71) is
igher than in the CamCAN dataset (median value of 0.57 across ROIs).

The HCP results are shown in Fig. 12 , normalized by 20 phase-
crambled versions and averaged across subjects, as described for
ig. 11 A in the CamCAN data above. The results are similar to those
ig. 11 A, though in this case, the MD method dCor actually did better
han 1D Pearson. Pearson-RCA (MD) and Pearson-SVD (1D) did reason-
bly well, but MVPD and Pearson-CCA did not do better than chance.
he chance-performance of MVPD is similar to what was shown in sim-
lation Example 3, where the mapping T varies between runs. It is pos-
ible that the HCP data also entail a mapping that changes across runs
e.g. owing to residual motion-related differences). Pearson-CCA does
ot perform well, perhaps because the ratio of time points to total num-
er of voxels is still relatively small, even in the HCP dataset ( Fig. 6 B). 

.2. MEG (lagged, frequency-domain) analyses 

The MEG data were acquired from 102 magnetometers and 204 pla-
ar gradiometers, sampled at 1 kHz. Details of the preprocessing can
gain be found in Taylor et al. (2017) , but in brief, environmental noise
as removed using signal-space separation, bad (outlying) 2 s epochs
ere excluded, and the data bandpass-filtered from 1 to 48 Hz. A single-

hell head model was constructed from each subject’s structural MRI and
 scalar beamformer used to project the sensor data to approximately
000 points on a 6 mm grid within the brain. Time series (scaled by
eamformer weights to adjust for depth) were then extracted for each
rid point within each of the 96 cortical HOA ROIs, which typically var-
ed from 2 to 339 “voxels ” (median = 41; note these 6 × 6 × 6 mm
oxels are considerably larger than the fMRI ones above). To make the
ata size more manageable (e.g., keep the file size below 2 MB), data
ere then downsampled to 100 Hz, and only the middle half (260 s) of

he data extracted. The resulting time series therefore contained 26,000
ime points every 10 ms (100 Hz). The script for estimating the fMRI
onnectivity metrics is called “test_meg.m ” in the GitHub directory. 

The frequency-domain methods were applied to a broad frequency
ange (4–48 Hz), which encompasses the dominant brain oscillations
nd because cross-hemisphere coupling has been observed across many
uch frequencies ( Vidaurre et al., 2018 ). When normalising by 20 phase-
crambled versions, none of the MEG lagged measures (1D or MD)
howed a homology effect that was significantly above 0. This may
eflect the lower SNR of MEG data than fMRI data. While this might
e resolved by running many more phase-scrambled versions, this be-
omes computationally prohibitive. Therefore, we examined the non-
ormalised results. Although these do not allow direct comparison
cross metrics, because we are subtracting non-homologous connections
rom homologous ones, the expected chance value of the homology score
or each metric is still zero. These non-normalised results, averaged over
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Fig. 13. Performance of the non-cross-validated, lagged frequency-domain metrics 

on the single run of source-reconstructed MEG data from 20 subjects in the CamCAN 

dataset. See Fig. 11 A legend for more details. 
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he 48 connections, are shown in Fig. 13 . Importantly, the two MD met-
ics (MIM and MVLagCoh) both did better than their 1D equivalents
ImCoh and LagCoh respectively). In addition, the Lagged Coherence
etrics did better than the Imaginary Coherence metrics (possibly due

o the fact that LagCoh and MVLagCoh are better at partialling out the
ero-lag contributions, which might increase the number of false nega-
ives, than are ImCoh and MIM). 

. Discussion 

Neuroscience research benefits from constant advances in brain mea-
urement and analysis techniques. For example, recent developments
n machine learning and pattern analysis in particular have helped re-
earchers gain insight into the information that is carried by populations
f neurons, or that is distributed across many response channels (e.g.
EG electrodes, fMRI voxels, etc.). While pattern analysis is now com-
only used for information mapping for individual ROIs in the brain,

esearch on functional connectivity between ROIs has not benefitted to
he same extent. The main premise of pattern information analysis is that
 region’s response cannot be characterized by a one-dimensional (1D)
esponse (e.g. average response) but can be thought of as points in high-
imensional response spaces. Recently, a number of methods have been
roposed that bridge from classical 1D-functional connectivity analysis
o multi-dimensional (MD) pattern analysis, which capture the shared
nformation in two regions. In this paper, we reviewed a number of MD-
onnectivity methods, in a manner that we hope is helpful to both those
ho want an intuitive introduction and those who want a formal charac-

erisation. We also simulated special cases that were constructed in order
o illustrate the main strengths and weaknesses of each approach. The
ake home messages from our simulations are summarised in Table 1 . 

The main messages in Table 1 include the fact that multivariate pat-
ern dependence (MVPD, Anzellotti et al., 2017b ) and linearly predicted
epresentational dissimilarity (LPRD, Basti et al., 2019 ) have the advan-
age that they provide a generative model of regional interactions (also
t the level of subspaces corresponding to the dominant principal com-
onents), whereas distance correlation ( Geerligs et al. 2016 ) and rep-
esentational connectivity analysis ( Kriegeskorte et al., 2008 ) quantify
hared information without providing a model (i.e. a MD-mapping from
ne region to another). However, estimating this mapping requires that
VPD is given multiple datasets (runs) with which to cross-validate the
apping. This is problematic for MVPD if the mapping changes across

uns (e.g. due to head motion in fMRI). LPRD (as it is implemented
ere) overcomes this issue by estimating the transformation in a within-
un cross-validated framework, at the expense of potential biased esti-
ates of the mapping if the noise is correlated. Also, these mappings are
ormally assumed to be linear, and while nonlinear mappings could be
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8 Of course, homogeneity at the level of measurement (e.g. voxels in fMRI) 

does not imply functional homogeneity at finer spatial scales: e.g. voxels could 

average over many functionally different neuronal populations, effectively re- 
rained (e.g. using neural networks, Anzellotti et al., 2017a ), this would
enerally require more data. 

By contrast, distance-based approaches like dCor and RCA can more
asily handle nonlinear mappings, e.g. through using Euclidean or other
etrics of dissimilarity between patterns (indeed, dCor can be seen as a

pecial case of RCA that uses a Euclidean metric). However, a downside
f metrics like Euclidean distance (and hence dCor) is that they can be
ore sensitive to structured noise (e.g. between runs) than are corre-

ational metrics (like Pearson-CCA) that normalise by the variance in
ach time series. An alternative solution is to Z-transform the time se-
ies prior to estimating connectivity, though this can in turn miss what
ight be true differences in the magnitude of dissimilarity between pat-

erns (which is why we did not Z-transform in our examples, although
ur code provides this option). 

Some MD-connectivity methods have the option of dimension reduc-
ion, such as using SVD to reduce to N > 1 components that capture the
ajority of variance within each ROI. However, a danger here is that

here may be important covariance between ROIs (the primary focus of
onnectivity analysis) that does not represent a large proportion of the
ariance within one of the ROIs, and therefore is lost by dimension re-
uction. This is exactly the problem that CCA solves, by selecting one
ime series per ROI that simultaneously maximises the correlation be-
ween ROIs, rather than selecting one time series that summarises each
OI independently. Another solution (that could be applied to LPRD and
VPD) is to regularise estimation of the multi-dimensional mapping be-

ween ROIs, which encourages dimension reduction at the same time as
apturing the important covariance between ROIs. 

In Section 4.3 , we also explored the sensitivity of each metric to
oise. While this plot only applies when T is a fixed, linear mapping and
he noise is independent across voxels, it suggests that some measures
ike dCor are more robust to noise than others like RCA. This robustness
ill depend on the details of the algorithm (e.g. measure of dissimilarity
sed in RCA), which is beyond the current remit, but the simulation re-
ults suggest that one might want to consider a range of MD-connectivity
etrics on a (held-out) dataset, to see which is most robust to the type

nd level of noise in that dataset. 
Finally, of the methods considered here, only the multivariate inter-

ction measure (MIM, Ewald et al., 2012 ) and multivariate lagged coher-
nce (MVLagCoh, Pascual-Marqui, 2007 b) can currently capture time-
agged, multi-dimensional phase-coupling between ROIs. We suspect
his will be particularly important for source-reconstructed MEG/EEG
ata, where ROIs contain multiple time series from dipoles with differ-
nt orientations (given that the sign of the data depends on the dipole
rientation), which means that simple averaging will never be appro-
riate. 

When applied to real data, using relatively large, anatomically-
efined ROIs, we found that, while 1D metrics, specifically Pearson cor-
elation, often performed as well as MD metrics like dCor and Pearson-
CA, when averaging across connections (ROIs), there was a significant
roportion of connections (in the CamCAN fMRI data) for which MD
etrics did better. The advantage of MD metrics was even clearer for

he (lagged) metrics applied to source-reconstructed MEG data, where
D metrics also outperformed their 1D equivalents on average across all

onnections. This may be because the signal in each “voxel ” in source-
ocalised MEG depends on the dominant orientation of the underlying
lectrical currents in that voxel, which may result in a higher dimen-
ionality of dominant signal variance within the ROIs. 

Note that, while we used fMRI to demonstrate non-lagged measures
nd MEG to demonstrate lagged measures, it is possible to apply lagged
easures to fMRI data (e.g. after adjusting for the potential confound of
ifferent haemodynamic response functions in different ROIs) and non-
agged measures to MEG data (e.g. after adjusting for zero-lag effects of
eld-spread). Note also that, even with non-lagged measures, regional
ariability in the haemodynamic response function can still confound
MRI measures of functional connectivity ( Rangaprakash et al., 2018 ). 
d

It is important to remember that one could define ROIs as ones in
hich their components (e.g. voxels) are functionally homogeneous,
nd therefore ones where averaging and 1D-connectivity is the correct
pproach by definition. For example, ROIs could be defined function-
lly by contiguous collections of voxels that have similar time series,
r even similar 1D-connectivity ( Craddock et al., 2015 ). This would
egate the need for any MD-connectivity. However, in many situations,
he homogeneity of ROIs is not known, for example when they are de-
ned anatomically, or when their functional definition in one popula-
ion (e.g. young people) may not generalize to another (e.g. older peo-
le; Geerligs et al., 2017 ). Relatedly, it is worth noting that investigating
he information content of activity patterns can uncover processes that
re not accessible by 1D-connectivity methods. For example, while aver-
ge single activations for Gabor patches of various orientations might be
quivalent in early visual areas, activity patterns in those areas nonethe-
ess demonstrate explicit information about the orientation of the stim-
li. Therefore, it may be the case that averaging activations across re-
ponse channels masks the fact that two regions have different response
roperties, even though they are called “connected ” according to 1D
nalysis. This is the converse to what we show in our examples, i.e. that
wo regions might have shared information in their MD-responses but
o 1D-connectivity. 

.1. Ten rules for multi-dimensional functional connectivity 

Below we offer ten rules for someone considering application of MD-
onnectivity measures: 

1 If you are confident that all your ROIs are homogeneous, then 1D-
connectivity methods can be more sensitive than MD-connectivity
methods. In this case, the mean across voxels is a sufficient sum-
mary (though SVD should produce very similar answers). The de-
gree of 1D-connectivity might be estimated by linear methods like
Pearson correlation coefficient, or Spearman rank correlation (e.g.
if data distribution contains outliers) or nonlinear methods like mu-
tual information or (e.g. for EEG/MEG) time-lagged measures like
the imaginary part of coherency, imaginary part of phase-locking
value, lagged coherence or phase lag indices ( Marzetti et al., 2019 ).
However, homogeneous ROIs are rarely guaranteed, and examining
the singular values of a SVD can help give an idea of homogeneity. 8 

2 If you are confident that a ROI can be considered as one-dimensional,
but variation along that dimension might be captured better by some
voxels than others (e.g. owing to differing noise levels) or even ex-
pressed differently across voxels (e.g. some may be activated and
some deactivated), then consider applying 1D-connectivity measures
based on SVD rather than those based on the mean across voxels. Al-
ternatively, if you think that the connectivity between ROIs is one-
dimensional, but that each ROI contains a lot of independent noise
(which would affect a SVD performed within each ROI), then con-
sider using Pearson-CCA (assuming that there is a sufficient number
of time points/scans). 

3 If a ROI contains multiple dimensions of variation (e.g. SVD does not
suggest a single dominant mode), then consider a MD-connectivity
measure. if you do not care about the explicit form of the mapping
between ROIs in fMRI, but wish to allow for nonlinear as well as
linear mappings, then consider dCor. dCor does not require cross-
validation across runs and appears quite robust to noise. Note that
dCor is a special case of RCA; a case that uses a Euclidean measure
of similarity plus some extra steps to centre the time series. How-
ever, be careful about structured forms of noise (noise that is corre-
lated across voxels), which can reduce the sensivity of dCor. Some
ucing a multi-dimensional neural space to one dimension of data. 
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of the effects of this structured noise can be ameliorated by nor-
malising your time series or switching to a normalised measure of
similarity like a correlation coefficient (the most common choice in
RCA). 

4 As opposed to MD-connectivity methods that only test for the pres-
ence of shared information, MVPD and LPRD give insight into the
nature of that shared information, by providing an estimate of the
mapping between ROIs. Thus, if you want to estimate the functional
transformation between two regions (besides simply testing for the
presence of MD-connectivity), you should consider using one of these
two metrics. It is worth noting that the mapping estimated by MPVD
is conceptually different from the mapping estimated by LPRD: the
former method relies on a transformation between two subsets of
temporal modes, while the latter directly relies on a MD-mapping
between voxels (in particular on a voxel-by-voxel linear transforma-
tion). Finally, both MVPD and LPRD will only detect linear map-
pings (though nonlinear mappings could be captured by projecting
the data to basis functions or using more advanced nonlinear esti-
mation techniques such as neural networks, Anzellotti et al., 2017a ).

5 If you want to investigate the presence of MD phase-coupling (e.g.
in MEG or EEG) between ROIs, then consider MIM or MVLagCoh
(or multivariate phase slope index for directed multi-dimensional
interactions, Basti et al., 2018 ). Instead, if you are interested in
amplitude-coupling (the other main coupling mode, Siems and Siegel
2020 , Engel et al., 2013 ), an extension/modification of these mea-
sures is needed. For instance, one strategy could be to average all
the possible pairwise (orthogonalised) amplitude envelope correla-
tions between either the time series or the temporal modes asso-
ciated with the two ROIs. Instead, if you want to investigate MD
directed lagged interaction without disentangling phase- from pure
amplitude-coupling, then consider applying properly (e.g. handling
of the artificial zero-lag contribution) a Granger-causality method to
the sets of multiple time series ( Barrett et al., 2010 ). 

6 If you are interested in the representational geometry of ROIs (for
example, if you have multiple stimuli across different trials for each
time point), then consider RCA, specifically the explicit construction
of a RDM for each ROI, which may reveal structure in your stimulus
patterns. If you have an explicit hypothesis about that structure, you
could estimate the degree to which each ROI’s RDM matches a model
RDM that encapsulates that hypothesis (or use some other form of
multivariate classifier) and correlate the degree of that match across
time points (informational connectivity, Coutanche and Thompson-
Schill 2013 ). 

7 If you either have only one run (or trial) or it is possible that the map-
ping between ROIs changes across runs, you cannot use either MVPD
or the between-run version of LPRD ( Basti et al., 2019 ), since they re-
quire cross-validation of the estimates across independent datasets.
If the samples (e.g. time points) are independent, you could con-
sider within-run cross-validation of LPRD. If you do have multiple
runs, and the mapping is stable across those runs, but the presence
of correlated noise cannot be excluded ( Henriksson et al., 2015 ),
only MVPD (and the between-run version of LPRD) can control false
positives, via cross-validation across the runs. 

8 If the data might be contaminated by structured noise, i.e. a global
signal across all voxels that changes with time (e.g. artefactual dif-
ferences across trials in overall activation, when using single-trial
fMRI estimates), then among the MD-connectivity methods consid-
ered in this review, only Pearson-RCA and LPRD are insensitive to
such noise. In order to make other metrics like MVPD able to cope
with this issue, one may consider first normalising (e.g. Z-scoring)
the multiple time series within each voxel. 

9 For all the MD-connectivity measures (e.g. dCor and RCA) for which
the expected value in the case of no true connectivity is not zero,
it is fundamental to test for significance of MD-connectivity values
with some form of randomisation testing (e.g. phase-shuffling of time
series data). 
0 In general, there is no single, best MD-connectivity measure, and
we showed that each has pros and cons. Researchers could try all
of them (or a subset according to the properties we explained here)
and then use a nested cross-validation scheme for choosing the “right
measure ” for their dataset and choice of ROIs (or correct for multiple
hypothesis testing when using multiple measures). 

Exploring MD-connectivity is still only in its infancy. It is likely that
here is a unified mathematical framework in which the current exam-
les are special cases. Moreover, here we have only considered methods
or estimating single (pairwise) connections, but there are methods (usu-
lly called “multivariate connectivity methods ”) that simultaneously es-
imate all connections in a network, which is needed to properly ac-
ount for the fact that a “direct ” connection between regions X and Y
eeds to partial out the contributions of “indirect ” connections via a
hird region Z ( Sanchez-Romero and Cole 2019 ; Stramaglia et al., 2014 ;
arrett et al., 2010 ;). Future work might enable a combined “multivari-
te, multi-dimensional ” approach also for other types of methods (e.g.
attern-distance metrics), where multiple direct dependencies are esti-
ated amongst multiple ROIs, where each ROI is itself represented by
ultiple response channels. 

Finally, it is important to note that we have focused on the methods,
sing artificial examples, rather than the possible underlying neuronal
ruth, i.e. how neuronal populations might communicate via multi-
imensional interactions (or to use the terminology of Reid et al., 2019 ,
e have also focused more on the “map ” than the “territory ”). One way

o address the latter is to use sophisticated (generative), neurophysi-
logical models of neuronal interactions, perhaps using meso ‑scale or
ean-field approximations, together with a “forward ” or “observation ”
odel ” that captures the measurement process (e.g. fMRI or MEG), and

hen investigate the extent to which the current MD methods capture
hose interactions, compared to 1D connectivity methods. If so, this
ould cement the importance of considering how best to measure MD-

onnectivity in the brain. 
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