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Accurate identification of brain function is necessary to understand the
neurobiology of cognitive ageing, and thereby promote well-being across
the lifespan. A common tool used to investigate neurocognitive ageing is
functional magnetic resonance imaging (fMRI). However, although fMRI
data are often interpreted in terms of neuronal activity, the blood oxygen-
ation level-dependent (BOLD) signal measured by fMRI includes
contributions of both vascular and neuronal factors, which change differen-
tially with age. While some studies investigate vascular ageing factors, the
results of these studies are not well known within the field of neurocognitive
ageing and therefore vascular confounds in neurocognitive fMRI studies are
common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20
have applied techniques to correct for vascular effects. However, neurovas-
cular ageing is not only a confound in fMRI, but an important feature in
its own right, to be assessed alongside measures of neuronal ageing. We
review current approaches to dissociate neuronal and vascular components
of BOLD-fMRI of regional activity and functional connectivity. We highlight
emerging evidence that vascular mechanisms in the brain do not simply con-
trol blood flow to support the metabolic needs of neurons, but form complex
neurovascular interactions that influence neuronal function in health and
disease.

This article is part of the theme issue ‘Key relationships between non-
invasive functional neuroimaging and the underlying neuronal activity’.
1. Introduction
The worldwide population is rapidly ageing, creating a pressing need to
understand the neurobiology of healthy cognitive ageing, over and above the
problems associated with the rise of dementia in ageing societies [1]. Under-
standing the neural mechanisms of healthy ageing will inform efforts to
maintain cognitive function, which is critical for well-being across the lifespan
[2]. While neuroimaging has led to advances in knowledge about relationships
between neural function and cognition, the effects of age on these interactions
are poorly understood. This is owing in part to outdated methodology,
inadequate awareness and treatment of confounding variables, opaque report-
ing of results, lack of replication and a failure to consider the limitations of the
signals of interest. In this paper, we review two complementary disciplines,
neurocognitive ageing and neurovascular ageing, which have suffered from
these limitations and have proceeded somewhat independently. We argue for
a better understanding of their relative contributions to functional magnetic res-
onance imaging (fMRI) signals, so as to formally integrate them in models of
successful ageing, avoid common misinterpretations of fMRI and provide
solutions to the limitations within each discipline alone.

The literature on neurocognitive ageing over the past 30 years has exten-
sively relied on the blood oxygenation level-dependent (BOLD) signal
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Figure 1. A schematic illustration of the physiological basis of the BOLD response. Neuronal activity elicited by a stimulus or background modulation gives rise to a
complex neurovascular coupling signalling cascade. That triggers a heamodynamic response resulting in a blood-oxygen-level-depedent (BOLD) signal owing to
changes in the magnetic field inhomogeneity detected as a T2*-weighted signal by an MRI scanner. (Lower panel) Some of the suspected mediators of the differ-
ential age effects on the processes that give rise to the BOLD response. CBVa, arterial cerebral blood volume; CBVv, venous cerebral blood volume; CBF, cerebal blood
flow; CVR, cerebral vascular reactivity; CMRO2, cerebral metabolic rate of blood oxygen consumption; oHb, oxygenated heamoglobin; dHb, deoxygenated heamo-
globin; OEF, oxygen extraction fraction; B0, magnetic field; PP, pulse pressure.
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detected for most fMRI. The fMRI signal reflects changes in
deoxyhaemoglobin concentrations in response to neural
activity (figure 1). These concentrations change because
increases in local synaptic activity and neuronal firing rates
consume energy, which is sourced by transient local increase
of cerebral blood flow (CBF) and cerebral blood volume
(CBV). In simple terms, the dominant consequence is a tem-
porary increase (‘over-compensation’) in oxygenated
haemoglobin in the capillary and venous bed draining the
activated region, reducing the concentration of deoxyhaemo-
globin. Since deoxyhaemoglobin is paramagnetic, decreases
in its concentration in turn increase the BOLD signal. The bio-
physical models of this neurovascular coupling include
equations for dynamics of CBF, CBV and the cerebral meta-
bolic rate of blood oxygen consumption (CMRO2; for more
details see [3–5]). The resulting BOLD changes to a brief
(less than 1 s) period of neuronal activity that can last up to
30 s, with a characteristic temporal profile that is known as
the haemodynamic response function (HRF) [6–9]. Many of the
processes represented by parameters in these biophysical
models are affected by ageing, owing for example to age-
related changes in vascular health. Therefore, a failure to con-
sider changes in vascular health can mean that differences in
fMRI signals are erroneously attributed to neuronal differ-
ences [10–12] and in turn their cognitive relevance is
misunderstood [13–15].

In this review, we first consider some of the main
mediators of the transformation of neural activity into a
haemodynamic response. We show how age-related altera-
tions in the neuro–vascular interaction can influence the
interpretation of changes in BOLD signal. This leads to
changes in the measurements of regional activity and connec-
tivity. We then turn to emerging evidence for the complex
physiological changes with age, which give rise to slowing
of cognitive function. These motivate the development of
new models that characterize the joint contribution of vascu-
lar and neuronal influences to fMRI, in order to better
understand the neurobiology of cognitive ageing. The contin-
ued interest in fMRI, above methods that are not affected by
the vascular effects such as magneto- or electro-encephalogra-
phy, rests on its safety, wide availability, high spatial
resolution and full brain depth of imaging.
2. Age-related changes in neuro–vascular
influences

The study of neurovascular pathology has been relevant to
understanding many medical, neurological and psychiatric
disorders. Alterations in the neurovascular system during
healthy ageing have also been studied at both the cellular
and structural levels. These changes typically remain
undiagnosed and may have no directly apparent conse-
quences for cognitive function, but they may compromise
vasculature and the ‘neurovascular unit’ that couple neur-
onal activity to vascular responses. This undermines the
straightforward interpretation of BOLD as an index of neu-
rometabolic activity in older populations, those on drugs
that influence vascular function and many diseases that
alter the neurovascular unit. The following section reviews
the major neurovascular changes related to ageing, and con-
siders the physiological consequences of structural changes
for the BOLD fMRI signal.

(a) Cellular and structural/morphological changes
(i) Vasculature, blood vessels and the cerebrovascular tree
Age leads to alterations in the cerebrovascular ‘tree’ at mol-
ecular, cellular and structural levels [16–19]. Large elastic
arteries dilate, stiffen and become atheromatous and
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tortuous, while the intima of the muscular arteries thickens
[20]. Vascular stiffening is also associated with alterations in
smooth muscle cells [21], calcification and disruptions in
the collagen–elastin balance [22,23]. Some arterial alterations
are coupled with capillary rarefaction, in addition to molecu-
lar and morphological changes that perturb the brain–blood
barrier (BBB) [16,22,24]. Ageing is also associated with endo-
thelial dysfunction, which contributes to dysregulation of
vascular tone, astrocyte-dependent BBB permeability and
nitric-oxide-dependent inflammation [19,25]. Damage to the
endothelium aggravates vascular stiffening [22,26,27] and
compromises the vessels’ ability to dilate and constrict in
response to variations of blood pressure or vasoactive
substances [16,23]. In addition, there is an age-related impair-
ment in the mechanism underlying electrical propagation of
retrograde hyperpolarization signal along the endothelial
cells, thereby impairing the remote vasodilation of upstream
pial arterioles and increased perfusion in the capillary bed [25].

Pericytes are a group of microvascular mural cells
embedded in the basement of blood microvessels that regulate
blood flow both physiologically and pathologically [28] in
addition to fine tuning vascular tone and BBB permeability
with their contractile properties [29,30]. Age-related changes in
pericytes [16,22] together with other mural cell alterations are
likely to lead to changes in thevascular basis of theBOLDsignal.

In short, disruption of a myriad of cerebrovascular factors
acting on different levels of the vascular tree contributes
synergistically to changes in neurovascular signalling,
perfusion and reactivity.
(ii) Neuronal and non-neuronal cells
Neurons can directly control cerebral blood flow [31]. In par-
ticular, interneurons produce vasodilators [32,33] and
vasoconstrictors [34], such as nitric oxide, prostanoids,
endothelin etc. (for more information on vasoactive agents
see [25,35]). Stimulation that selectively targets interneurons
causes a relatively small increase in oxygen consumption
but a relatively large increase in CBF. In contrast, stimulation
of excitatory neurons causes relatively large increase in
oxygen consumption but relatively small increase in CBF
[36,37]. These results suggest that, while the primary driver
of the BOLD response (i.e. CBF) is interneuron activation,
additional CMRO2-mediated changes in BOLD signal reflect
excitatory neuron-modulated oxygen consumption [31]. The
interpretation of these findings in the context of ageing is
important, given the dissociating effects of age on excitatory
versus inhibitory signalling and synapses [38–41].

While the role of glial cells in the neurovascular unit is
less well understood than neuronal and vascular com-
ponents, increasing evidence implicates glial elements as
mediators between neurons and blood vessels [42]. Astro-
cytes are a diverse population of glial cells whose functions
include neurovascular signalling [43], linking neurons to
their blood supply [44] and regulating the BBB [45]. Acti-
vated astrocytes release vasoactive agents via multiple
signalling pathways at different levels of the vascular tree
[46] independently from other endothelial pathways [47]
including caveolea-mediated vasodilation in arterial endo-
thelium [48]. Retraction of the astrocytic endfeet as part of
the clasmatodendrotic response [49], together with changes
in the immune response and calcium signalling, impairs by-
product clearance as the BBB efficiency breaks down
[16,50]. Age-related changes in glia [16,22] together with
mural and endothelial cell alterations could be stronger
than that of neurons [51] and are likely to lead to changes
in the vascular basis of the BOLD signal. Future work
needs to consider how glial elements could be measured,
integrated with in vivo neuroimaging and accounted for in
physiological ageing models.

While both glia and neurons play a role in the vascular
basis of the BOLD signal, their relative contribution to
baseline (endogeneous) BOLD signal versus evoked (exo-
geneous, e.g. task-based) BOLD remains unclear. This is
important because the baseline of blood flow, which
decreases with ageing, can affect the sign and the magnitude
of the evoked BOLD signal, without changes in underlying
neural activity [52–55]. Age may differentiate the separate
factors that regulate artery tone [31] versus evoked responses
[36]. Taken together, it appears that subtypes of glia, mural
cells, endothelium and inter-neurons control the BOLD
signal, independent of the activity of the neighbouring excit-
atory neurons, and likely through multiple signalling
mechanisms that contribute synergistically to vasodilation.
Multiple neurovascular coupling (NVC) pathways acting on
different levels of the vascular tree crucially depend on
well-orchestrated interplay between different cell types of
the neuro-glio-vascular unit, which may provide multiple
safety mechanisms [46]. Ultimately, an integrated under-
standing of age effects on all components of the neuro-
glio-vascular unit is required for a better understanding of
the physiological basis of neurocognitive ageing, especially
where inferences are drawn from fMRI.

(b) Physiological changes
It is the effects of age on cerebrovascular function that render
interpretation of age differences in the BOLD signal so chal-
lenging. Cerebrovascular function can be assessed by
measuring: (i) resting CBF, (ii) CBF responses to changes in
arterial CO2, referred to as cerebrovascular reactivity (CVR),
(iii) CBF responses to changes in blood pressure, referred to
as cerebral autoregulation, and (iv) CBF responses to changes
in neural activation, referred to as NVC. Cerebrovascular
alterations also include brain pulsatility and the cerebral
metabolic rate of oxygen extraction. Below we review these
changes based on the common range of physiological
recordings (see also [16,25,56,57]).

(i) Resting cerebral blood flow
Decrease in global baseline CBF with age has been reported
in early studies using transcranial Doppler ultrasonography
[58], radiotracer techniques [56,59,60] and phase contrast ima-
ging [61]. These changes are widespread across the cerebral
cortex and the basal forebrain. The physiology underlying
the CBF decrease in the aged brain is still debated [62]. The
main candidates include primary causes of impaired vasoac-
tivity and cardiovascular regulation of CBF during ageing,
rather than the reduction in cardiac output [63]. CBF decline
may also reflect the secondary effects of brain atrophy and
reduction in neural activity as a shift towards lower metabolic
demands, rather than primary changes in vasculature. The
finding that changes in CBF can affect the sign and magni-
tude of the evoked BOLD signal without affecting
underlying neural activity [52–54] is in line with the deoxy-
haemoglobin-dilution model [64–66]. Therefore, the decline
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in the baseline CBF with ageing has implications for the
interpretation of fMRI studies of ageing.

(ii) Cerebrovascular reactivity
Cerebrovascular reactivity (CVR) is informative about vascu-
lar health. CVR is distinct from resting CBF, as it measures the
ability of cerebral arteries and arterioles to dynamically regu-
late blood supply through dilation or constriction. In
particular, CVR reflects the CBF responses to changes in
arterial CO2, whereby elevated partial pressure of arterial
CO2 (hypercapnia) causes dilation of vascular smooth
muscle, leading to regional increases in CBF, while reduced
CO2 partial pressure (hypocapnia) causes vasoconstriction
leading to regional decreases in CBF. Vascular sensitivity to
CO2 is very marked in the cerebrovasculature [67] and is
thought to depend on intra- and extracellular pH changes
that modulate vascular smooth muscle tone [68–70]. There-
fore, CVR is considered to be a more direct measure of
vascular endothelium and smooth muscle function compared
to baseline CBF. CO2 quantification in cerebrovasculature has
used transcranial Doppler ultrasound [71], radiotracer tech-
niques [72] and contrast imaging [73]. There is general
agreement across multiple imaging techniques that changes
in CBF relative to changes in CO2 partial pressure are similar
between brain regions under hypercapnia, but not under
hypocapnia [74]. Experimental modulation in CO2 partial
pressure has been used to validate non-invasive perfusion
techniques [75,76], as well as biophysical [77] and
biochemical [78] aspects of cerebral vasodilation.

Global decline in CVR with age has been reported using
transcranial Doppler ultrasound [58], radio tracer techniques
[60,79,80] and phase contrast imaging [81]. Age-related differ-
ences in the response of regional CBF to CO2 inhalation have
been reported using PET [82]. Reduction in hypercapnia-
induced vasodilation in the cerebellum and insular cortex,
as well as hypocapnia-induced vasoconstriction in the frontal
cortex, has been observed in older adults, suggesting less
effective vascular response in cerebral perforating arteries
[82]. Likely causes for CVR changes are arterial stiffening
[83] and compromised endothelial function in blood vessels
[84], which lead to a decreased vascular response to match
metabolic demands. In addition, white matter hyperintensi-
ties, a common MRI finding in ageing, are associated with
reduced baseline CBF and reduced response to hypercapnia
[85,86]. Compromised CVR will lead to a reduced dynamic
range of the BOLD signal, having direct implications for
task-based fMRI studies of ageing: even with the same
levels of neural activation across age groups, lower CVR in
the older group would lead to smaller amounts of vasodila-
tion and therefore reduced evoked CBF, reduced decrease of
deoxyhaemoglobin concentration and reduced BOLD
signal. Without controlling for CVR differences, this would
lead to an under-representation of neural responses in older
individuals.

(iii) Pulsatility
Cyclic cardiac contractions that pump blood through the
arterial system generate a pulsatile blood flow and concomi-
tant pulsatile pressure experienced by vascular wall tissue.
This pulsatile phenomenon is absorbed before it reaches
pressure-sensitive cerebral capillaries, and maintenance of
steady flow and pressure ensures exchange of nutrients and
clearance by-products. The first line of defence to minimize
the effect of flow and pressure pulsatility in the microcircula-
tion is achieved by the highly elastic aorta and muscular
arteries, e.g. the aorta–carotid interface. The distensibility
mismatch in these vessels dampens the pulsatile energy pro-
jected distally, known as the Windkessel effect [87,88].
Arterial stiffening caused by imbalance in elastin–collagen
in the load-bearing intima of the aorta and central elastic
arteries alters arterial distensibility, translating into increased
pulse wave velocity [89]. The change of pulse wave velocity
with age alters the wave reflection properties at the aorta–
carotid interface, resulting in less effective cushioning of
pulsations in the arterial system, i.e. diminished Windkessel
effect, and greater transmission of pulsatile energy into the
cerebral microcirculation [56]. Increase of pulsatility in the
proximal part of cerebrovasculature is further exacerbated
with age increase in pulse pressure (increased difference
between systolic and diastolic pressure). Transcranial Dop-
pler ultrasound of major arteries entering the brain,
together with phase contrast MRI of the whole brain, both
point to an age-related increase in cerebral pulsatility
[90,91]. These changes can potentially contribute to microvas-
cular ischaemia and tissue damage that is seen in some MRI-
derived measures [90,92,93]. These microvascular changes
have in the past been considered as a benign feature of
ageing, but may actually be a significant contributor to
changes in neurocognitive function [94]. With regards to
BOLD imaging, pulsatile blood flow not only leads to fluctu-
ation in signal intensity in arteries, arterioles and other large
vessels [95], but also an age-related increase in pulsatility
deeper in microvasculature. This could have dramatic effects
on the BOLD signal in the proximity of neuronal tissue,
which has only recently been recognized as a potential
confound of BOLD studies [12,96–100].
(iv) Cerebral autoregulation
The second line of defence for minimizing pressure fluctu-
ations in brain microvasculature is cerebral autoregulation,
referred to here as autoregulation, via the vessels’ ability to
dilate or constrict in response to systemic perfusion pressure
changes [74]. This is complementary to CVR [101,102]. In par-
ticular, autoregulation constitutes the ability of the cerebral
vasculature to maintain steady flow and pressure in the capil-
lary bed during transient changes in arterial pressure or
intracranial pressure. The myogenic response, which is intrin-
sic to the vascular smooth cells and a key mechanism to
autoregulation, is impaired with ageing, especially under
conditions of hypertension and increased pressure pulsatility
[57]. Furthermore, impaired autoregulation precedes vascular
damage in white matter [103] and relates to white matter
hyperintensities [104] in animal and human studies,
respectively.

The CVR and autoregulation adjustment of vascular
resistance to varying arterial CO2 and pressure, respectively,
is primarily modulated in large arteries and pial arterioles
[74]. This suggests that BOLD-related measures targeting
CVR and autoregulation may be sensitive to ageing effects
in the proximal part of the vasculature, and less sensitive to
independent changes in the distal part of the cerebral circula-
tion and physiological factors therein. In other words, CVR
and autoregulation may be less sensitive to mechanisms
underlying retrograde intramural propagation of vascular
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signals, causing remote vasodilation of upstream pial arter-
ioles, i.e. impairing mechanisms of communication within
the neurovascular unit [47].
(c) Drug effects
Older people are more likely to be taking medications,
including medications for age-related chronic disorders
such as high blood pressure, diabetes, blood clotting, arthritis
or neurodegeneration. Ageing studies often do not explicitly
address these potential confounds in the interpretation of
their results, which potentially modifies their conclusions,
especially since the drugs are likely to affect the cascade of sig-
nalling and vascular events that form the basis of the BOLD
signal [105]. Approaches aimed at dissociating vascular from
neuronal signals should seek to identify, characterize and
control for the confounding effects of drugs in ageing studies.
3. Dissociating neuro–vascular influences in
BOLD fMRI signal

In order to interpret fMRI data, one needs to understand the
contributions of neuronal and vascular components of signal
variance. Some studies of neurocognitive ageing attempt to
bypass the impact of vascular influences through their
inclusion criteria, e.g. excluding individuals with a history
of hypertension, cardiovascular or neurological conditions.
These are, however, categorical criteria that are insensitive
to continuous variation in the population and unable to
resolve the effects of undiagnosed/presymptomatic con-
ditions, not to mention producing results that are
potentially biased in not generalizing to the typical ageing
person.

There are several other approaches to separate, or ‘uncon-
found’, neural from vascular factors. These are summarized
as three broad strategies (figure 2). The first is based on
detecting vascular signals in BOLD fMRI data by using
independent measurement of vascular signals, termed here
vascular unconfounding. The second relies on identifying
neuronal signals in BOLD fMRI by using independent
measurement of neuronal signals, termed neuronal integration.
The third uses formal modelling approaches to the fMRI signal.
Below we review the methods and exemplar applications
within each strategy, and illustrate their strengths and
weaknesses for studying the effects of ageing.

(a) Vascular detection using fMRI
The first class of approaches focuses on estimating vascular
contributions to the BOLD signal using an independent
MRI-based measurement that aims to capture individual
variability in one or more of the physiological factors dis-
cussed in the previous section. An implicit assumption of
these methods is that they explain variability in vascular sig-
nals (see figure 2), but not variability related to neural
activity, such that they can be used to ‘adjust’ the BOLD
signal without removing age-related neuronal changes.
These approaches further fall into calibration and normaliza-
tion methods. We focus here on task-evoked BOLD responses
in voxel-wise imaging, but the principles can be applied to
other forms of analysis.

(i) Normalization using baseline cerebral blood flow
Regional baseline CBF has for many years been measured
with positron emission tomography (PET) [106] or MRI
using tracer kinetic procedures [107]. However, safety con-
cerns associated with tracers and the complexity of
procedures have limited their application in BOLD studies
of ageing. The predominant fMRI method for estimating rest-
ing CBF is based on endogenous contrast generated through
perfusion of blood water into brain tissue [108]. The signal
intensity is generated by applying a magnetic label to
proton spins of the inflowing arterial blood water, termed
arterial-spin labelling (ASL) [109]. In analogy to PET per-
fusion imaging, the ASL ‘tracer’ is the endogenous arterial
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blood water, where the magnetic label decays with T1 instead
of radioactive decay. Deep understanding of the physiologi-
cal basis of ASL and validation against radiotracer
approaches [110–115] has established ASL as a robust and
non-invasive technique to provide quantitative estimates of
baseline CBF. An overview of ASL-variations and an agree-
ment on its application have been discussed previously [116].

Resting state ASL studies of ageing support the presence
of age-related atrophy-independent decreases in resting CBF
throughout the cortex [117–119]. Some studies also suggest a
nonlinear effect across the lifespan [120]. Interestingly,
increases in regional CBF, in lateral and medial temporal
lobe for example, have been observed with increasing age
[118,121,122], which may reflect macro-vascular artefacts
[123,124] owing to prolonged arterial transit time with
ageing [125].

ASL studies support the proposal that age-related decline
in baseline CBF reflects both cardiovascular and neurovascu-
lar impairment [119]. For example, age-related reduction in
baseline CBF occurs in cortical regions typically associated
with high vascular risk and genetic factors [126,127], and pre-
cedes brain atrophy [128–130]. However, recall that baseline
brain perfusion is highly dependent on other physiological
factors, and the difference in CBF may also reflect age bias
in these factors, rather than baseline changes in CBF [131].
For example, baseline ASL may reflect spontaneous CO2 fluc-
tuations, medication use, time of day, or levels of wakefulness
[132]. Some influences are global and related to vascular
tonus, while other local variations are the result of psychotro-
pic effects on the brain. As an example, physical exercise,
drinking coffee or smoking just before the perfusion measure-
ment have substantial influence on both global and local
quantification [133–136]. While this may be a drawback for
absolute CBF quantification, it is an advantage for the use
of ASL as a normalization technique, i.e., to control for
multiple physiological factors in BOLD studies.

ASL has been broadly used to estimate baseline CBF, and
has been used to try to rule out drug effects on vascular con-
tributions to BOLD effects of disease or drug [137,138].
However, it is rarely used for a formal normalizing approach
in evoked BOLD studies of age. This could be owing to the
low signal-to-noise ratio of ASL, low spatial resolution and
additional time needed to acquire baseline CBF, and a prefer-
ence to integrate it within a BOLD fMRI acquisition (see
§3a(iii) below). In one study, regional age-related differences
in BOLD activation were shown to be mediated by baseline
ASL-CBF, suggesting a substantial vascular contribution
with regional specificity to the observed BOLD age differ-
ences [139]. In summary, the improvement in quality and
application of baseline ASL-CBF measurements in recent
years offers advantages over some of the other following
approaches to control for age-related differences in physio-
logical influences of BOLD signal.
(ii) Normalization using cerebrovascular reactivity
This approach differs from the baseline perfusion approach in
that it relies on experimentally perturbed physiological states
during the MRI scan. This physiological response, defined as
cerebrovascular reactivity above, leads to changes in BOLD
signal that are dominated by vascular factors (reflecting tran-
sient variations in physiological factors) in the absence of
apparent changes in neuronal activity. In particular,
estimation of cerebrovascular reactivity exploits the molecu-
lar mechanisms of CO2-induced vasodilation (discussed in
§1b above), which can be used to model variability in phys-
iological signals of evoked BOLD data. Fluctuations in
arterial blood CO2 can take three forms of hypercapnia:
CO2 administration, voluntary breathhold or naturally occur-
ring fluctuations linked to respiration during a resting state
fMRI acquisition (discussed in 3a(ii) and in [140]). As the
CVR manipulations work under the assumption of no
changes in the underlying neuronal activity and oxygen
extraction (CMRO2) [64], the CVR manipulation takes the
form:

DBOLDCVR ¼ M(1� fa�b
CVR),

where f =CBF/CBF0 represents CBF signal normalized by its
respective baseline value. The subscript CVR denotes the
hypercapnia condition and the parameter M defines the
maximum possible BOLD signal change for a brain region.
The superscript parameters are determined empirically, but
are well approximated as α≈ 0.4 and β ≈ 1.5 [6]. Dividing
the task-based BOLD response by the hypercapnia response
yields a normalized BOLD response of the form:

DBOLDN ¼ (1� fa�b
F mb

F )

(1� fa�b
CVR)

,

where m =CMRO2/CMRO2,0 represents CMRO2 signal nor-
malized by its respective baseline value. The subscripts N
and F denote the normalized BOLD response and the func-
tional responses, respectively. Note that the M term cancels
out in the normalized response, which precludes estimation
of modulatory factors of M, such as magnetic field strength
and baseline blood volume and oxygenation [141]. This nor-
malization procedure entails the division of a functional
contrast map by a CVR map, i.e. normalization at each
voxel. However, including the hypercapnia response as a cov-
ariate in a voxel-level, general linear model (GLM), together
with the functional BOLD response (e.g. when predicting be-
havioural or demographic measures) might provide a better
approach [142]. It is worth noting that these operations
assume a linear relationship between CBF and BOLD signal
that holds across varying CO2-levels in arterial blood. How-
ever, this may not always be true [143], given claims of a
nonlinear BOLD–CBF relationship [144] and a nonlinear
response of vasculature to large CO2 and arterial pressure
fluctuations [101,145]. This is further complicated by the ‘vas-
cular steal’ phenomenon of flow diversion from regions of
low to high cerebrovascular reactivity [146] and interactions
between multiple physiological factors that increase with
age [22]. While this warrants future research on modelling
the nonlinear nature of the effects, the current approaches
may lead to underestimation, rather than overestimation,
and therefore still offer a partial solution to minimize
vascular influences in evoked BOLD signal.
CO2-induced hypercapnia
An individual’s hypercapnia response can be modulated by
inhaling a special gas mixture inside the MRI scanner. Ban-
dettini and Wong [141] were the first to demonstrate the
utility of this technique for BOLD fMRI studies. (For a techni-
cal review and practicalities of this approach using various
types of apparatus, see Liu et al. [140,147] and Germuska &
Wise [148].) Regardless of the gas-delivery apparatus,
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accurate assessment of CVR relies on tracking the maximal
concentration of CO2 in the exhaled air—so-called ‘end-
tidal CO2’ (Et-CO2)—during breathing cycles with varying
CO2 concentration in the inhaled gas (see in video format,
[149]). The variation of Et-CO2 is tightly linked to changes
in alveolar pressure of CO2 and fluctuations in arterial vaso-
dilation, indicating the extent to which the vascular system is
challenged. The analysis of CO2-induced hypercapnia data is
conceptually similar to the task-evoked fMRI, where the tem-
porally aligned Et-CO2 timecourse is included as the main
regressor in a GLM to produce a cerebrovascular response
(CVRCO2

) brain map. Early studies of CO2-induced cerebro-
vascular reactivity demonstrate a close regional overlap
between voxels showing BOLD CO2 responses (BOLD-
CVRCO2

map) estimated from fMRI and voxels showing a cer-
ebrovascular response (CBF-CVRCO2

map) estimated from
PET [150] and ASL [143,151,152]. Although this overlap has
high reproducibility [153] across various field strengths and
MRI sequences [154], BOLD-CVRCO2

is more sensitive to
basal CO2 fluctuations than CBF-CVRCO2

[143].
BOLD-CVRCO2

in grey matter declines with age
[11,152,155–157]. The age effects on BOLD-CVRCO2

are
more prominent than those on baseline ASL-CBF [155,156]
and exhibit distinct regional patterns [117], supporting the
notion of age having independent effects on CVR and base-
line CBF [118]. Interestingly, age-related BOLD-CVRCO2

increases are found in white matter [157], which may reflect
changes in the mechanical properties of the white matter:
white matter in older adults becomes less densely packed
owing to demyelination and axon loss, making it easier for
blood to penetrate and vessels to dilate.

Combining BOLD-CVRCO2
with evoked BOLD studies of

ageing allows correction for regionally specific effects
[11,158], which could lead to improved associations between
BOLD estimates and outcomes of interest [159]. For example,
age-related decreases in evoked BOLD responses in V1 and
medial temporal lobe were abolished after correction, while
age-related increases in bilateral frontal gyrus remained
after correction. This suggests that many age-related differ-
ences found in fMRI studies reflect changes in vasodilation
rather than in neuronal activity.

Unfortunately, such corrective methods have not been
widely used, in part owing to impracticalities of large-scale
studies, and tolerance by older adults and clinical popu-
lations [160,161]. Furthermore, a gas-induced hypercapnic
challenge may not be neuronally neutral [162–165], e.g.,
given participants’ awareness of the aversive challenge, and
this effect on neural activity may differ with age [166]. In
this case, correction by CVRCO2

might obscure true task-
related neural differences with age. Nonetheless, recent
developments in the gas challenge procedure allow for esti-
mation of multiple physiological parameters, including
venous oxygenation and resting state functional connectivity
(see [167]), which may improve the accuracy of corrections for
vascular signals in BOLD fMRI studies.

Breath-hold-induced hypercapnia
An alternative way to modulate arterial CO2 in the absence of
gas-delivery apparatus involves breathing challenges, where
participants endogenously increase arterial CO2 by volunta-
rily holding their breath [168], which we term CVRBH to
indicate breath-holding [169]. BOLD-based CVRBH demon-
strates high correspondence with ASL-based CVRBH
[170,171], BOLD-CVRCO2
([172–174]; cf. [175]) and has excel-

lent repeatability [176,177]. Improved CVRBH estimation may
be achieved using variations in the breath-hold procedure
[178–181] and in analysis of the data [176,182,183].

Beyond its use to minimize inter-individual variability of
physiological influences in BOLD studies of young adults
[142,172,174,184–187], breath-holding has been used more
commonly in ageing studies than other normalization
approaches [172,188–194]. Riecker and colleagues showed
that the age differences in BOLD response of sensorimotor
regions during finger tapping were accompanied by differ-
ences in BOLD-CVRBH [194], which was one of the first
indications that evoked fMRI studies of ageing require care-
ful interpretation of observed BOLD differences. Later
studies extended these findings to other primary sensory
regions, and corroborated the idea that age-related decline
in evoked BOLD response to sensorimotor stimuli can be
accounted for by age differences in CVRBH [172,191]. Inter-
estingly, age differences in BOLD signal in ‘higher-order’
cortical regions during cognitive tasks often remained after
controlling for CVRBH, suggesting the relationship between
BOLD signal, neural activity, vascular signal and age
varies across brain regions [172,191]. More recent studies
confirm that consideration of CVRBH not only changes the
pattern of regional age differences in evoked BOLD response
[188,192,195], but also improves the strength of the relation-
ship between BOLD responses and performance on the task
[196].

However, while breath-holding may be more tolerable
and has been employed in more ageing studies than gas-
induced CVR, the compliance to the breath-holding pro-
cedure, lung capacity, inspiration and expiration ability of
participants may decrease with their age [197]. Such biases
affect data quality and reliability measures [175,179], high-
lighting the advantage of other less invasive (task-free)
estimates of vascular components of BOLD time series.
Resting state fluctuation amplitudes
One such ‘task-free’ estimate of the vascular component of
the BOLD signal is the intrinsic variability of the BOLD
signal across time (after bandpass filtering to remove slow
drifts in MRI signal and high frequency motion artefacts).
This is known as resting state fluctuation amplitude
(RSFA). Early studies demonstrate that RSFA reflects natu-
rally occurring fluctuations in arterial CO2 induced by
variations in cardiac rhythm and in respiratory rate and
depth [198,199]. RSFA approximates the BOLD response to
hypercapnic challenge and was proposed as a safe, scalable
and robust cerebrovascular reactivity mapping technique
[12,200]. As with other methods discussed above, the use of
RSFA as a correction method for BOLD requires the assump-
tion that age differences in RSFA reflect only vascular factors,
rather than age-related differences in neural function.
Although RSFA demonstrates high correspondence across
brain regions and individuals when compared to baseline
ASL-CBF [118,201], BOLD-CVRBH and BOLD-CVRCO2

[197,200,202], and in groups with compromised CVR
[203,204], the effects of age on RSFA cannot be fully
explained by these factors [118,201]. Therefore, without
understanding the unexplained effects of age on RSFA in
terms of neuronal versus vascular influences it would be
dangerous to use RSFA as a normalization technique.
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Recent evidence has improved our understanding of the
origins of RSFA. For example, pulsatile effects could influ-
ence the BOLD signal in the proximity of large brain
vessels and cerebrospinal fluid. In particular, the age-related
increase in pulsatility deeper in microvasculature (see Pulsati-
lity §2b(iii)) is likely to contribute to the RSFA signal, as
recently recognized [12,96–100]. This could explain why
Tsvetanov and colleagues [12] found that age differences in
RSFA are either fully or partly mediated by heart rate varia-
bility. In contrast, these authors further found no evidence
that neural variability (as measured by magnetoencephalo-
graphy (MEG)) mediated the age effects of RSFA [12]; these
findings were further supported by EEG-based neural esti-
mates [205]. However, while age-related differences in
RSFA may not reflect neuronal signals, the use of either
somatic vascular measures or cerebrovascular measures
explained only part of the age-related differences in RSFA.
This leaves open the possibility that age-related differences
in RSFA reflect joint contributions from cardiovascular
and neurovascular factors, as in the case of BOLD signal
fluctuations [206,207].

To resolve this ambiguity, we followed up our original
study by considering the simultaneous assessment of the
independent and shared effects of cardiovascular, cerebrovas-
cular and neuronal effects on age-related differences in RSFA
[118]. After controlling for either cardiovascular and neuro-
vascular estimates alone, the residual variance in RSFA
across individuals remained significantly associated with
age, replicating the above findings. However, when control-
ling for both cardiovascular and cerebrovascular estimates,
the residual variance in RSFA was no longer associated
with age. This suggests that cardiovascular and cerebrovascu-
lar signals are together sufficient predictors of age-related
differences in RSFA. In summary, while originally proposed
to control for CVR [200], RSFA captures multiple vascular
signals that are independently affected by age, and appears
to be a valid method to correct for vascular factors in the
BOLD signal, in order to better characterize effects of age
on neural, and ultimately cognitive, function.

When RSFA is used to correct evoked BOLD data, the
amplitude and spatial pattern of the normalized response
are similar to that when using CVRBH and CVRCO2

[200].
Controlling for RSFA has been shown to minimize non-
neural BOLD variability across individuals [186] in popu-
lations with impaired cardiovascular health [208,209], and
improve estimation of evoked BOLD signals related to
distinct neuronal mechanisms [210]. In studies of ageing,
controlling for RSFA in evoked BOLD signal accounts for
age-related differences in BOLD response in some sensory
regions, comparable to findings from alternative normaliza-
tion approaches [12,190,191,211]. Importantly, not all age
differences disappear after controlling for RSFA—for
example, the ipsilateral motor cortex overactivation in
older adults remains, consistent with results from other
approaches used to study ageing effects on the motor
system [212–215].

Variations in the estimation of RSFA exist, which may be
more sensitive to CVR relative to cardiovascular signals [216].
In addition, other means of RSFA-like estimates have been
proposed to derive from non-resting cognitive states [217]
or fixation-/resting-periods succeeding task periods [201].
Given that short periods of cognitive engagement have
been shown to modulate the BOLD signal in a subsequent
resting state scan [218,219], future studies are required to gen-
eralize RSFA findings to RSFA-like estimates derived from
other types of fMRI acquisitions.

Other CVR-induced variations
The measures discussed above could be complemented

with other physiological measures, such as total baseline
venous oxygenation from phase contrast MRI [220], which
may provide superior signal-to-noise ratio compared to
ASL, or cerebral blood volume [114] with multiple physio-
logic parameters [221]. Their usefulness for estimating age-
related differences in the vascular component of the BOLD
signal remains to be demonstrated.

(iii) Calibration using concurrent fMRI
Theuseof so-called ‘calibrated fMRI’hasbeenpossible formany
years and can in theory control for differences in both baseline
physiology and haemodynamic coupling across individuals
and hence ages. The technique involves measuring blood flow,
blood volume and venous oxygenation via normocapnic and
hypercapnic/hyperoxic gas challenge during a concurrent
measurement of BOLD and CBF [148,222,223]. As such, cali-
brated fMRI provides a measure of relative changes in
CMRO2, which can be integrated with physiological models
[224,225], to estimate quantitatively the absolute rate of cerebral
metabolic oxygen consumption (CMRO2), i.e. oxidative metab-
olism, from the data. However, it has not seen widespread
adoption, mainly because it is difficult to implement.

In theory, measurements of task-evoked oxidative metab-
olism provide quantitative estimates of CMRO2, which can
help understand neuronal differences in oxidative metab-
olism across age groups even if they have differences in
vascular health [10,158,226–228]. However, for at least some
of this work, the motivation has been to distinguish the phys-
iological components underlying BOLD in attempts to more
narrowly isolate the age differences in CMRO2. For instance,
Ances and colleagues [226] found age differences in M, vaso-
dilatory capacity, as the principal difference between their
young and old groups. Hutchison and colleagues [10], how-
ever, isolated the differences to the decoupling change in CBF
relative to CMRO2, i.e. decoupling of CBF and CMRO2, impli-
cating neurovascular impairment as an underlying factor of
neural efficiency [229–231]. Measuring task-induced relative
changes with the calibrated approach relies on several
assumptions, including a constant coupling between cerebral
blood flow and cerebral blood volume across individuals and
brain regions [224]. This could lead to ambiguity of interpret-
ation as the baseline may also be changing with age. Yet the
CBF–CBV coupling seems to be regionally specific, and
depend on disease stages [224], therefore requiring additional
physiological measures [114,148]. These factors may explain
the low frequency of use of such calibrated fMRI.

(iv) General remarks on normalization and calibrating techniques
Advancing age is associated with multiple alterations in cel-
lular and structural vasculature, leading to multiple
physiological changes that directly influence the BOLD
signal. However, in contrast to the over 10 000 fMRI papers
on ageing during the past 20 years, there are fewer than
100 papers addressing calibration and normalization tech-
niques of fMRI-BOLD signal, and fewer than 20
independent studies of ageing that have applied these
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techniques. Future studies of ageing should consider the
above correction methods, as we expand in §4.

A major issue is that nearly all the approaches reviewed
above assume that vascular (age-related) factors have a linear
influence on BOLD signal. However, there are nonlinear influ-
ences on the BOLD signal [145], which is rarely factored in
analysis of BOLD data. Individual differences in vascular fac-
tors may occur singly, though more often in combination
during ageing [22]. Moreover, these effects might be relatively
independent of one another in early adulthood, but become
increasingly coupled with advancing age. It is difficult to
define which particular vascular factor might be primarily
responsible for age-related changes and the degree and extent
of their influence on BOLD signal. This is further complicated
by the drugs and medication (e.g. used to normalize blood
pressure) that are more often taken in old age. More research
is needed to test which correction method (or combination of
correction methods) can best correct for cerebrovascular
influences to the BOLD signal in ageing studies.
 B
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(b) Neuronal integration
The second class of approaches focuses on estimating neuronal
contributions to the BOLD signal using independent measures
of neural function. The advantages of such an integration
approach, as opposed to working solely with measures of
neural function, are discussed below. An implicit assumption
of these approaches is that they explain variability in neural
activity (figure 2), but not variability related to non-neuronal
physiological signals. It is also important to note that such
integration will work for age effects detected jointly by
both modalities, but neural signals identified uniquely by
either modality may remain undetected in the data.

Electroencephalography (EEG) and MEG (together
M/EEG) are two widely used non-invasive techniques in
neuroscience, and ageing. Although each technique provides
important insights in isolation, there are advantages to inte-
grating fMRI and M/EEG in a multimodal approach that is
more powerful than each one alone [232]. We introduced
fMRI as an indirect measure of neural activity with a tem-
poral resolution of seconds, but with a spatial resolution of
millimetres. M/EEG, on the other hand, directly measure
millisecond electromagnetic activity from large populations
of neurons, but at the cost of far worse spatial resolution, par-
ticularly for sources of that activity that are deep in the brain.
Therefore, combining evidence fromM/EEG and fMRI-based
techniques can to some extent complement the inherent limit-
ations within each individual imaging modality [14,232,233].
For example, M/EEG can be used to identify neuronal com-
ponents and events beyond the temporal resolution of fMRI
[234,235], while fMRI can be used to improve the spatial
resolution of M/EEG signals [236,237].

The primary neural source of BOLD signal is synaptic
activity in the grey matter, rather than spiking activity, as
indicated by a closer relationship of the BOLD signal to
local field potentials than multiunit activity recordings
[238–240]. BOLD–M/EEG associations span multiple fre-
quencies, although those in the gamma band appear most
notable. These gamma oscillations (greater than 30 hz) are
themselves too fast for BOLD to follow, but fluctuations in
their power or amplitude envelopes typically fall in similar
frequency range to the BOLD signal. Nonetheless, it is impor-
tant to consider all neuronal frequencies together as a
collective account of the fMRI signal, even if differential con-
tributions are found across frequencies [241–244] and even if
different frequencies are differently affected by ageing.

The main advantage MEG has over EEG is that the neur-
onal sources, though difficult to localize precisely, are better
localized than with EEG. Thus while EEG has been used to
study neurocognitive ageing for many years, MEG is
making an increasing contribution, particularly in combi-
nation with formal models of neuronal circuits and their
dynamics [245–249]. However, reports that combine task-
based MEG with task-based fMRI are only starting to
emerge [245], and the combination of MEG with calibrated
fMRI in cognitive experiments [250] allows integration of
MEG, BOLD and CBF responses to better study differences
in neurovascular coupling with ageing.

One advantage that EEG has over MEG however is that it
can be acquired simultaneously with fMRI, which is
especially important for task-free states that are hard to repli-
cate when EEG and fMRI are run separately [232]. EEG has
been used to separate neural from vascular components of
the BOLD signal [235] and decompose subcomponents of
the haemodynamic response function [192,195,251]. One
challenge for concurrent EEG–fMRI remains the strong mag-
netic interference in EEG signals [252], although this can be
mostly overcome during data processing [147]. In the context
of ageing, a study using concurrent EEG–fMRI reported a
small number of age-related BOLD components that were
associated with EEG [253], suggesting that the combination
of both methods can better dissociate neural from non-
neural signals than fMRI alone. In addition, there was a set
of BOLD components that were not related to EEG com-
ponents, and vice versa, and it remains unknown whether
these components have a neuronal or non-neuronal origin.
Since MEG and EEG have different sensitivities to different
types of neuronal sources (depending on the orientation
and depth of the underlying synaptic currents; [254,255]), it
is advantageous to combine them too [237,256]. Indeed, in
future work, EEG data could be acquired simultaneously
with MEG and then simultaneously with fMRI, so as to
provide a bridge between all three modalities.

There are other techniques, such as measures of glucose util-
ization [257], beta-amyloid burden [258], synaptic density [259],
optical imaging [260], PET markers of neuroinflammation
[261,262], MR spectroscopic measures of the neurotransmitters
[263,264] and even non-invasive brain stimulation [265,266]
that may further help understand the basis of BOLD signals,
but are beyond the scope of this review.
(c) fMRI modelling and signal decomposition
The third class of approaches focuses on formal modelling or
statistical decomposition of the relative contribution of vascu-
lar and neuronal factors in the observed BOLD signal. Formal
modelling approaches include linear models like the GLM, in
which age-related variation can be captured by basis func-
tions, as well as more complex, nonlinear, biophysical
models that use differential equations that capture how neur-
onal events elicit variations in CBF, CBV and CVR and then
ultimately changes in the BOLD signal [267,268]. Fitting
these models to BOLD data results in estimates of various
parameters that can then be related to age. Statistical
decomposition approaches, on the other hand, are data-
driven, such as principal component analysis (PCA) and
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independent component analysis (ICA). Both modelling and
decomposition approaches can be useful even when there are
no other measures of vascular or neuronal signals ( just BOLD
data). However, the application and interpretation of these
approaches need to be treated with care: biophysical model-
ling for example typically operates within a high-
dimensional space with highly covarying parameters (often
requiring prior constraints on the parameters, based on
other physiological knowledge), while decomposition tech-
niques will optimize the selection of signals based on a
specific statistical criterion; e.g. PCA optimizes for variance,
while ICA optimizes for independence.
 tb
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(i) The haemodynamic response function
The temporal evolution of the BOLD response to a brief
burst of neuronal activity (an impulse response) is charac-
terized as the haemodynamic response function (HRF). The
HRF typically peaks at 5–6 s, followed by an undershoot
that lasts 20–30 s. The precise HRF shape varies across cor-
tical regions, individuals and brain states. This variability is
caused by variability in neurovascular coupling and cer-
ebrovascular function, even in the presence of unchanged
levels of neural activity [8,269]. One notable finding
comes from Cohen and colleagues [53], who demonstrated
that varying levels of CBF (induced by hypercapnia, nor-
mocapnia and hypocapnia) mediated the onset time,
time-to-peak and amplitude of the HRF under the same
visual stimulation. The HRF has also been shown to
change with genetic, hormonal and other systemic fluctu-
ations [270–272]. Regional variability in the HRF is partly
dictated by the size of surrounding blood vessels, e.g.
regions with larger draining veins have a more delayed
HRF [273–275]. While some fMRI studies use a temporal
basis set within the GLM to allow for variations in HRF
shape across voxels/individuals [7,276], many use a
single, ‘canonical’ HRF. In the latter case, any inferences
about age differences in neuronal activity are complicated
if there is a systematic age-related bias in the HRF [277].
For example, a 2-second mis-estimation in the latency of
the HRF could (artificially) decrease the magnitude of the
estimated neural response by 38% [273]. One potential
way to address this would be to demonstrate the specificity
of the findings to the condition of interest, but not other
contrasts in the experiment.

Several studies have used multiple temporal basis func-
tions with the GLM to capture age-related variations in the
HRF shape, including approaches where estimation of the
basis function parameters is jointly optimized with esti-
mation of brain activity [278,279]. However, the results
have been mixed (see [280]), which might reflect variability
across studies in the tasks, the use of relatively small
sample sizes and biased selection of participants (particu-
larly when older volunteers are more healthy than
average). The recent study by West et al. [280] addressed
these problems by using a large, population-derived cohort
called Cam-CAN, in which a simple sensorimotor task was
optimized for detection of HRF shape [281]. This study
found extensive effects of age on the HRF, particularly its
latency, in many brain regions, despite the fact that there
were no performance differences between young and old
adults (although latencies of neuronal responses were not
directly measured).
(ii) Dynamic causal modelling
Dynamic causal modelling (DCM) is a model-based approach
to studying brain connectivity [282], which includes a bio-
physical model of the BOLD response [267,268]. DCM uses
a Bayesian framework to simultaneously estimate parameters
capturing neural activity (and connectivity) and parameters
capturing the vascular mapping of that activity to the
BOLD response. The neural activity can either be defined
by experimental manipulations [282] or by assumptions
about the endogenous fluctuations that occur in task-free
states like rest [283]. Importantly, the simultaneous optimiz-
ation of neuronal and vascular models (unlike in GLM
approaches above) means that differences in the estimated
vascular parameters (e.g. owing to age) are, in theory, uncon-
taminated by any differences in neuronal parameters.
However, the model can be under-determined (more degrees
of freedom in the model than in the data), requiring strong
priors on some of the parameters to regularize the models
[284]. These include priors based on physiological data
from previous studies, or shrinkage priors that require
strong evidence in order for posterior estimates to differ
from their prior expectation. The model optimization is
made with reference to (log)-model evidence, which accounts
for both model accuracy and model complexity.

We applied DCM to resting-state data from 635 adults
aged 18–88 in the CamCAN dataset [15]. A notable finding
was that neural and haemodynamic parameters were indepen-
dent predictors of age, supporting the hypothesis of separable
mechanisms leading to age alterations in neural and vascular
function. Furthermore, the neural (connectivity) parameters
were related to cognitive ability, and this relationship was
moderated by age, demonstrating the behavioural relevance
of this approach to neurocognitive ageing. Interestingly, the
same relationship to cognitive ability was not observed with
traditional (correlational) analysis of BOLD functional connec-
tivity, which confounds neural and vascular components of
the BOLD signal. These findings motivate the use of modelling
techniques like DCM to separate neural and vascular
components of the BOLD signal.
(iii) Independent component analysis
ICA is a data-driven approach to extract signals (components)
that are maximally independent across a dimension, such as
across space when applied to fMRI images. McKeown and
colleagues were some of the first to apply spatial ICA to
fMRI BOLD data under the assumption that signal from
each voxel represents a linear mixture of source signals
[285]. Each ICA component consists of a spatial pattern
across voxels associated with a common BOLD timecourse.
These components are often dominated by neural or non-
neural signals [286], and their spatial distribution (and/or
power spectrum) can sometimes be used to identify vascular
components (e.g. around the Circle of Willis) or other noise
sources (like motion artefacts, which often appear around
the edge of the brain). Another way to separate BOLD from
non-BOLD components is to combine ICA with multi-echo
fMRI: only ICA components dominated by BOLD signal
should show a linear dependency on echo-time (TE) [287].

Most studies use ICA to extract functional networks from
task-free fMRI data [15,288,289] or structured sources of
signal from morphological, vascular and neuroinflammatory
measures [12,262]. In task-based BOLD studies, the ICA
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approach offers multiple advantages over the traditional
GLM approach [290]. It can separate and remove non-neur-
onal signals for improving the sensitivity of subsequent
task-based GLM analysis [289,291]. ICA can also identify
task-based BOLD changes in a model-free manner that can
minimize sensitivity to variation in the HRF shape
[292,293]. Finally, ICA can dissociate between multiple con-
current processes associated with common regions under
varying cognitive states [294]. Despite these advantages,
future studies need to benchmark the efficiency of ICA to
control for age differences in neurovascular coupling against
other data-driven decomposition approaches [295] and
normalization methods of task-based BOLD.
Phil.Trans.R.Soc.B
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4. Towards neuro–vascular integration
The previous sections highlighted methodological approaches
to addressing age-related changes in cerebrovascular function
at the cellular, structural and physiological levels in the context
of BOLD fMRI and neurocognitive ageing. This methodologi-
cal emphasis reflects the currently dominant aim in
neurocognitive ageing: to relate cognitive changes to changes
in brain activity, such that changes in vascular components
are confounds of no interest. Here we argue that, rather than
ignoring or correcting for such confounds, we need a better
understanding of the neurovascular contribution to neurocog-
nitive ageing, and to formally integrate vascular changes into
models of successful ageing.

Vascular mechanisms in the brain do not simply control
blood flow to support the metabolic needs of neurons, but
lead to complex neurovascular interactions that shape
neuronal function in health and disease [16,25,94]. Microvas-
cular changes lead to lacunar infarcts, cortical and subcortical
microinfarcts, microbleeds and diffuse white matter disinte-
gration, which involves myelin loss and axonal
abnormalities [296]; all of which potentially impact cognition.
Brain areas in relatively sparse regions of the microvascular
network, including deeper structures and white matter, are
particularly vulnerable, predicting specificity in resulting
cognitive deficits [94]. Age-related deficits in cognitive func-
tion have been linked to cardiovascular risk factors [297],
white matter hyperintensities [298], increased pulsatility
[94] and neurovascular coupling impairment [16], which
may act through independent pathways [299]. Furthermore,
improvement in cognitive function has been linked to
increase in cardiovascular health [300]. These findings
suggest that the components of cerebrovascular function are
not simply confounders that obscure brain–behaviour
relationships, but are synergistic factors that facilitate main-
tenance and improvement of cognitive function across the
lifespan [16,94]. Therefore, formal integration of neurovascu-
lar knowledge provides an opportunity for a more
comprehensive understanding of successful cognitive
function in ageing.

Current models of neurovascular ageing [25,301] provide
an array of biological pathways leading to global brain
tissue loss/atrophy and cognitive deficits, mainly in age-
related neurodegeneration. However, such models are subop-
timal for characterizing healthy and successful ageing, where
cognitive function is maintained in the presence of brain atro-
phy [302]. In addition, the link between age-related changes in
brain tissue and cognition is surprisingly weak, and it has
proven difficult to establish region-by-region correlations
between brain structure and cognitive function [303]. More-
over, not all cognitive abilities decline with age, nor do all
older adults show cognitive decline at the same rate. Studying
the effect of neurovascular ageing on brain atrophy or global
cognitive decline on its own is insufficient for understanding
the complex pattern of cognitive diversity and increasing
individual variability in healthy ageing [304,305].

In the field of neurocognitive ageing, the advent of func-
tional imaging and its early emphasis on functional
segregation bolstered the idea that the brain can flexibly
respond to age or tissue loss, by recruiting additional brain
regions to support cognitive functions [306]. Many theories
of cognitive ageing have since emerged [306], some propos-
ing that the recruitment of additional brain regions
improves performance, while others suggest it can impede
performance [307]. Currently, there are three general models
of successful ageing in terms of sustained cognitive perform-
ance: maintenance, reorganization and reserve [308], which are
not necessarily fully compatible. In our view, these models
demand more sophisticated interpretation of BOLD fMRI
[309] through the integration of neurovascular ageing
[12,15]. It is important to ask whether and how multiple cer-
ebrovascular components (in models of neurovascular
ageing) independently and synergistically explain multiple
profiles of neural function leading to cognitive diversity in
ageing [289].

We propose that one should consider cerebrovascular
function as an additional predictor in the modelling of
brain–behaviour relationships, rather than simply a normali-
zation or confounding variable. This will provide a more
complete interpretation of the unique and shared contri-
butions to brain–behaviour relationships. For example, the
shared variance in task performance explained by vascular
and neural signals indicates the presence of a common under-
lying factor. Conversely, the unique variance explained by
neural signals suggests that the effects are beyond differences
in cerebrovascular function. Finally, unique variance
explained by vascular signals may indicate that the neuronal
estimates are insufficient to capture all behavioural variability
and an improved definition of the neuronal estimates should
be reconsidered. These scenarios are plausible in isolation or
in combination with one another, but importantly their con-
sideration provides an empirical motivation to understand
what determines cognitive diversity in ageing. Furthermore,
modelling and reporting the effects of cerebrovascular func-
tion on the brain–behaviour relationship is in the spirit of
maximizing internal validity [310], avoiding pitfalls of mod-
ular analysis [311], transparent reporting of results,
facilitation of replication and interpretation of findings
within the context of the limitations of the research
methodology providing the signals of interest.

In summary, we argue for the integration of neurovascu-
lar and neurocognitive research on biological, theoretical,
methodological and analytical grounds. We propose that
future research should focus on the interplay of vascular
and neural factors for maintaining mental health across the
lifespan (i.e. successful ageing) using a multi-modal, integra-
tive approach. Integration of neurovascular and
neurocognitive ageing could provide new insights into the
fundamental mechanisms that regulate brain health and
mental well-being. Importantly, it will determine the extent
to which these factors relate to neural function, relate to
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cognitive performance, and are associated with individual
differences in lifestyle, demography, genetics and health.
This will provide a bridge between modifiable risk and pro-
tective factors, neurovascular function and cognitive ability
across the healthy adult lifespan.
publishing.org/journal/rstb
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5. Conclusion
With recent advances in fMRI BOLD imaging, much has been
learned about the effects of age on neurovascular and neuro-
cognitive function. It is clear that neurovascular and neuronal
signals both contribute to fMRI BOLD signal, and that their
interaction affects the interpretations one can draw about
neurocognitive ageing. To understand the effect of ageing
on brain function, a variety of techniques have been devel-
oped and validated that separate vascular from neuronal
signals in BOLD-fMRI data. However, only a small fraction
of fMRI studies of ageing have adopted such approaches in
their analysis. We argue on biological, theoretical and analyti-
cal grounds for a better understanding of their relative
contributions to fMRI. Vascular and neuronal contributions
can be formally integrated in models of successful ageing,
avoiding common misinterpretations of fMRI and comple-
menting the limitations within individual modalities. Only
by first understanding these mechanisms and their inter-
actions can we subsequently address a major challenge that
pervades neurovascular and neurocognitive ageing: to
characterize the effects of healthy and pathological ageing
at the level of vascular and neuronal network structures of
the human brain across the lifespan.
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