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Abstract 

This thesis explores the lifestyle and brain structure correlates of cognitive ageing. Using 

large datasets and a range of multivariate statistical approaches, it is divided into three 

empirical sections, which are framed by a General Introduction and Conclusion.   

The first Chapter, the General Introduction, discusses this thesis within its wider 

context: ageing populations pose significant issues for individuals and societies, while 

the rise of Big Data offers promising opportunities to study the effects of brain health 

and lifestyles on cognitive ageing.  

Chapter 2 investigates the relationship between lifestyle and cognitive abilities across 

the adult lifespan. It shows that, in a sample of cognitively healthy participants (Cam-

CAN; N=708), higher education, better physical and mental health, more social 

engagement and a greater degree of intellectual engagement are each correlated with 

better fluid and crystallized cognitive abilities.  

Chapter 3 focuses on brain structure. It explores how different aspects of morphology – 

such as cortical thickness, curvature, sulcal depth or surface area – change with age, and 

relate to cognitive outcomes, including fluid intelligence. This chapter’s main finding is 

a cross-sectional and longitudinal double dissociation: while cortical thickness declines 

rapidly with age, it does not relate strongly to cognition, particularly after adjusting 

cognition for age. Surface area, on the other hand, has only moderate age-effects, but 

captures cognitive difference and change well. These findings replicated in a second, 

independent dataset (LCBC; N = 1236), suggesting that they are robust and generalizable 

across cohorts. It is plausible that this hitherto largely overlooked dissociation reflects 

two distinct neural features, which I discuss at the end of this section.   

The final empirical section, Chapter 4, brings together the first two sections by assessing 

lifestyle, brain structure and cognition simultaneously. Specifically, it investigates 

whether brain structure mediates the relationship between lifestyle and cognitive 

abilities. After initial cross-sectional analyses in Cam-CAN using the lifestyle factors 



created in Chapter 1, it then focuses on the mechanistically more plausible and (because 

of its longitudinal nature) statistically more robust relationship between cardiovascular 

health and cognitive performance in the LCBC data.  

Finally, in the conclusion, I address the wider societal and policy context in which this 

PhD is, ultimately, embedded. This thesis – and indeed the science of healthy minds 

and brains in general – finds its urgency not least in the steadily increasing speed at 

which the older segment of many nations’ populations is growing in size and 

proportion. Understanding (healthy) ageing amidst this demographic shift is of vital 

importance to individuals, society, and governments alike. I therefore reflect on my 

experiences at the World Health Organization (where an internship enabled me to 

contribute to the WHO’s report on Ageism) and on the kind and quality of science 

which should (and, perhaps, should not) inform policies designed to ensure that living 

a longer life also means living a healthier one.  
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Chapter 1:  General Introduction  

At its broadest level, this thesis draws together two developments – one societal, the 

other scientific – which profoundly shape the way we live, but which are rarely discussed 

together: a rapidly ageing population, and the rise of “Big Data”. The overarching 

question spanning the next five Chapters is: how can we harness the power of the latter 

to respond to the increasingly pressing concerns arising from the former?  

The goal of this introductory chapter is fourfold: first, to review the individual and 

societal consequences of population ageing; second, to discuss the opportunities and 

challenges that come with large, multimodal, and shared datasets in Cognitive 

Neuroscience; third, to explain the statistical methodologies used in this thesis; and 

fourth, to provide a brief literature review summarizing relevant questions and findings 

in the field of cognitive and brain ageing.  

 

1.1 The Costs and Consequences of Population Ageing  

Advances in medicine and public health, rising standards of living, and improvements 

in education and nutrition have lengthened the human life span.  Consequently, the 

older segment of the global adult population is increasing in size and proportion: 

according to estimates by the World Health Organization, by 2030, one in six people in 

the world will be over the age of 60, up from 1 in 11 in 2019 (World Health Organization, 

2015). While this demographic shift known as population ageing started in high-income 

countries, it is now low- and middle-income countries that are experiencing the greatest 

change:  by 2050, two-thirds of the world’s population over 60 years will live in low- and 
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middle-income nations (Kämpfen et al., 2018). This has already and will continue to 

profoundly alter the way people across the globe work, live, vote, retire, fall sick and 

receive care. It will change how economies grow, nations trade, populations migrate and 

banks loan (Lee & Mason, 2017).  

The Global Burden of Disease study predicts a steep rise in disability caused by increases 

in age-related chronic disease (Chang et al., 2019). For the first time, the loss of health 

and life worldwide will be greater from noncommunicable diseases (e.g., cardiovascular 

disease, dementia and Alzheimer’s disease, cancer, arthritis, and diabetes) than from 

infectious diseases, childhood diseases, and accidents. This shift in the healthcare 

landscape will be expensive: if left unmitigated, the financial cost of longevity could be 

so high that the IMF predicts many nations will cease to be fiscally sustainable – that is, 

governments’ abilities to collect tax revenue will decrease due to a smaller base of 

taxpayers while governments’ expenditures, particularly on healthcare spending, will 

continue to increase (Honda & Miyamoto, 2020). Of the ailments affecting older people, 

none are more expensive than dementia: in the US, care expenses over the last five years 

of life were 57 percent higher for dementia patients than for patients who died of any 

other cause such as heart disease or cancer (Kelley et al., 2015). In 2015, the total global 

societal cost of dementia was estimated to be US$ 818 billion, equivalent to 1.1% of global 

gross domestic product (GDP; Hurd et al., 2013).    

Scientists around the globe are racing to find ways to mitigate this looming (public) 

health crisis. They are searching for cures for dementia, ways of preventing or delaying 

its onset, as well as for a better understanding of risk profiles. This thesis contributes to 

the latter two bodies of research, asking what kind of lifestyle choices reduce the risk of 

cognitive decline and whether there are things people can do, as adults, to age 

cognitively healthier, and how we can use structural magnetic resonance imaging to 

describe and explain the neural mechanisms underlying the relationship between 

lifestyle and cognition. Preventative methods are predicted to be highly cost-effective: 

for instance, according to recent models in The Lancet, implementing three measures 

(treating hypertension, reducing smoking, providing hearing aids) would improve 
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health-related quality of life, reduce dementia prevalence by 8.5 percent and lower 

annual costs associated with dementia in England by £1·86 billion, accounting for 

intervention costs (Mukadam et al., 2020).  

It is important, at this point, to distinguish between dementia and cognitive decline. 

Both refer to the age-related worsening of cognitive functions such as memory or 

processing speed, but dementia is a clinical diagnosis used when the decline in mental 

ability is deemed rapid enough to interfere with independence and daily life (World 

Health Organization, 2019). Dementia can arise from various aetiologies, such as 

Alzheimer’s disease, vascular dementia, and frontotemporal dementia1. Cognitive 

decline, on the other hand, is a normal part of ageing: a person can be cognitively 

healthy even when showing some signs of decline. There is also mild cognitive 

impairment (MCI), which is a clinical diagnosis that refers to a transitional state 

between “typical” cognitive decline and dementia (Pandya et al., 2016). A meta-analysis 

identified the annual progression rate from MCI to dementia to be between 5 and 10 

percent, with 60 to 80 percent of people with MCI not progressing to dementia even 

after 10 years of follow-up (Mitchell & Shiri-Feshki, 2009). However, as life expectancy 

increases, this number is likely to go up, further straining the healthcare system. 

Interestingly, there is growing evidence that exercise and cognitive interventions for 

people diagnosed with MCI help to slow down their rate of cognitive decline, suggesting 

that there is room for malleability and plasticity at this stage of neurodegeneration 

(Kinsella et al., 2009; Reijnders et al., 2013; Teixeira et al., 2012). This thesis focuses on 

healthy cognitive ageing, looking at people who show typical (i.e., non-clinical) 

 

1 In 2014, term dementia (which derives from the Latin root demens, which means ‘out of one’s 

mind’) was abandoned and replaced in the DSM-5 with major neurocognitive disorder to 

acknowledge the biological and phenotypical heterogeneity of the syndrome (Sachdev et al., 

2014). However, because the term dementia is still used by researchers and policy makers, I will 

continue to refer to it in this thesis.  
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cognitive decline which has not been diagnosed as MCI or dementia, asking what can 

be learned from observational, large-sample datasets about the lifestyle and 

morphometric correlates of healthy cognitive ageing. I describe this Big Data approach 

in the next two sections.  Focusing on non-clinical populations heeds the philosophical 

argument that any understanding of disease should follow that of health, where health 

is considered not just the ‘absence of disease’ but the presence of something more, 

which Hausmann calls “functional efficiency” (Hausman, 2015). Understanding and 

describing the processes that allow a system to function well (e.g., non-clinical cognitive 

decline) provides insight into not just these functions, but, at a later stage, the reasons 

for which it can malfunction, e.g., in dementia (Millikan, 1989).  

 

1.2 The Rise of “Big Data” in Cognitive Neuroscience 

For most of the history of human neuroscience, scientists have qualitatively described 

individual or at most a small number of brains, relying, amongst other methods, on case 

and lesion studies (Harlow, 1848; Scoville & Milner, 1957) or post-mortem examinations 

(Brodman, 1909). Then, in the 1980s, magnetic resonance imaging (MRI) emerged, 

heralding decades of transformative research aimed at better understanding the MRI-

derived neural correlates of a wide range of cognitive phenotypes in (typically relatively 

small) groups of people (for reviews see Cabeza & Nyberg, 2000; Smith et al., 2004). 

However, as part of the “reproducibility crisis” (Maxwell et al., 2015; Open Science 

Collaboration, 2015), it emerged that large segments of cognitive neuroscience were 

guilty of many of the factors that Ioannidis (2005) has argued would contribute to 

increased levels of spurious results in any scientific field: i) small sample sizes, ii) small 

effect sizes, iii) large number of tested effects, iv), flexibility in designs, definitions, 

outcomes, and analysis methods and v) being a “hot” scientific field (Ioannidis, 2005).  
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One way to improve replicability across studies is to increase sample size. This is 

because low statistical power not only reduces the chance of detecting a true effect, but 

also increases the likelihood that a statistically significant result reflects a false effect 

(Button et al., 2013; although see also Gelman & Carlin, 2014). In cognitive neuroscience, 

calls for larger sample sizes can be met only by reshaping how the field conducts its 

science. Because MRI studies are expensive to run (typically $700 per hour), it would be 

difficult for an individual research group to collect the large amounts of data needed 

(Poldrack, 2012). Therefore, researchers have started aggregating neuroimaging data 

and making them available to each other (Bzdok & Yeo, 2017; Choudhury et al., 2014; 

Poldrack & Gorgolewski, 2014). Sharing large amounts of complex MRI data comes with 

its own challenges, including ethical concerns related to subject privacy, computational 

storage capacity issues and the ever-changing nature of neuroimaging data (Nichols et 

al., 2017). However, as many of the practical, ethical, and statistical hurdles of sharing 

and analysing large neuroimaging datasets are being overcome, the benefits of this 

endeavour are undeniable. In recent years, investigators were able to address and 

answer research questions with a level of scientific confidence that was previously 

difficult to attain. For instance, a longitudinal structural MRI study with over 4400 

observations from 2000 individuals refuted the influential hypothesis that higher 

education slows brain ageing  (Nyberg et al., 2021). Similarly, a team of researchers 

analysing the UK Biobank data (which includes brain MRI scans from N=9722 

participants) found that vascular risk factors like smoking, diabetes, and obesity were 

associated with greater brain atrophy, lower grey matter volume, and poorer white 

matter, providing strong observational evidence for a relationship between physical 

health and brain health (Cox et al., 2019). This shows that high-powered, well-

conducted large sample studies can offer strong naturalistic support for (or against) 

existing hypotheses.   

Large data consortia will not provide answers to all of cognitive neuroscience’s 

questions – important insight has been and will continue to be derived from hypothesis-

driven, well-controlled studies of small laboratory samples (Anderson, 2008). However, 
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I (and others) would argue that the more brain data become available, the more can 

potentially be learned about the mind  and the brain – so long as one applies adequate 

statistical models (Bzdok & Yeo, 2017). Section 1.3 will explain some of the core statistical 

concepts and methodologies necessary to analyse large datasets and demonstrate how 

they have been employed in this thesis, while the following section summarizes the two 

cohorts assessed in this thesis.  

1.3 Data analysis approaches 

1.3.1 Structural Equation Modelling  

In the following chapters, I study how cognition relates to other variables, such as 

lifestyle engagement and structural brain measures. Statistically, inter-individual 

differences (in, say, cognition) are estimated with a variance parameter, which captures 

the range of observed scores or performance on an outcome of interest. The associations 

between variables (e.g., age and memory) can be captured quantitatively using a 

covariance or correlation (the standardized covariance). Thus, if I am interested in the 

relationship between cognitive performance and morphometry, really what I study is 

how these two variables covary. Psychometric methods allow researchers to assess such 

variance-covariance structures in the form of hypothesized, simpler representations of 

the data (called models) which, in turn, function best in large samples (e.g. Wolf et al., 

2013). In fact, with increasing N, the number of unique (c0)variance terms increases 

(with N squared), which means that more and more data are needed to reliably estimate 

each term (as a rule of thumb, 10 participants per covariance term).  

One set of psychometric tools employed in this thesis is Structural Equation Modelling 

(SEM). SEM offers a general framework in which hypotheses can be formulated at the 

construct (latent) level and explicit measurement models link the observed variables to 

the latent constructs (Little, 2013; MacCallum & Austin, 2000). More precisely, SEM 

estimates parameters that capture the strength of relationships (paths) between 
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variables in a model so as to minimise the difference between the observed data 

variance-covariance matrix and the one implied by the model. It does so for a model 

that is generally simpler than the original data, as estimating every path would merely 

replicate the observed covariance matrix. Latent variable models account for 

measurement error, assess reliability and validity, and often have greater 

generalizability and statistical power than methods based on observed variables 

(Jacobucci et al., 2019). In Chapter 2, for instance, I create the latent variable Intellectual 

Engagement from several questionnaire responses (observed variables). This abstracts 

away from individual variables, while reducing measurement error associated with 

simple sum scores. It also widens the interpretability of the construct (and its 

association to other latent variables), allowing me to refer to an activity type 

(“Intellectual Engagement”) instead of individual activities (e.g., “doing Sudoku”).  

SEM also allows researchers to handle missing data in a relatively straightforward 

fashion. Full information maximum likelihood (FIML) has been shown to produce 

unbiased parameter estimates and standard errors (Enders & Bandalos, 2001). It 

estimates a likelihood function for each individual based on the present variables, 

thereby using all available data. Though the underlying mathematical principles exceed 

the scope of this thesis, FIMLs conceptual framework is relatively straightforward and 

can be explained with the analogy of broken pixels on a monitor. One can still process 

the image on a screen, even when some pixels are black, so long as there are enough 

functional pixels remaining, by using information of, for example, adjacent pixels as well 

as knowledge of the overall image. Similarly, FIML estimation uses what are known as 

case-wise log-likelihoods to fit a statistical model to incomplete data. By using only what 

is known from the observed data, FIML can infer what the whole model should look like 

without needing to know what the missing responses would truly be (Little et al., 2014). 

FIML generally requires missing values to be “missing at random” (MAR), a missingness 

category where the propensity for a data point to be missing is not related to the missing 

variable, but can be related to some of the present (non-missing) data (Enders, 2001). 
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However, violating the MAR assumption does not seriously distort parameter estimates 

(Collins et al., 2001).   

Another advantage of SEM is that it is easy to compare different models, in order to 

contrast competing theories or hypotheses (Ullman & Bentler, 2012).  An example of this 

is in Chapter 4, where I compare models to assess whether surface area and cortical 

thickness play dissociable roles in mediating the relationship between cardiovascular 

health and cognitive abilities. Constraining different parts (paths) of the models and 

then comparing their fit to each other allows me to investigate the strength of specific 

relationships between variables.  

The ability to statistically compare different models (that is, mathematically described 

concepts and theories) is a powerful extension of null-hypothesis significance testing 

(NHST). NHST, by definition, assesses the probability that an effect equal or larger than 

the observed effect (such as the relationship between two variables) would occur by 

chance if the null hypothesis were true (that there is no effect). If that probability is 

deemed sufficiently small, the null hypothesis is rejected, and an effect is considered 

‘statistically significant’. NHST has been criticised on multiple fronts. Of relevance to 

this thesis is that rejecting the null does not provide logical or strong support for the 

alternative. The endeavour to build, assess and compare mathematical models does not 

reject the core logic NHST: whether we favour one model over another can still be based 

on the probabilistic inference provided by the same mathematics that guide general 

linear model analyses (such as the t-test or ANOVA). What modelling does do is shift 

the focal point from the null hypothesis to model content, asking: does the fit of the 

more complex model increase enough, compared with that of the less complex model, 

that the cost of additional complexity is worth it (Rodgers, 2010)? In this way, we are 

not comparing “nothing” (that is, the null) to “something” (the alternative hypothesis), 

but two plausible scientific hypotheses, theories, or models to one-another.  
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1.3.2 Longitudinal data  

1.3.2.1  Cross-sectional versus longitudinal approaches  

To study cognitive and brain ageing, researchers can (within the framework of 

observational data analysis) investigate cross-sectional data, longitudinal data, or a 

combination of both. Each approach comes with its own challenges and opportunities. 

Cross-sectional studies of ageing are generally (relatively) quick, easy, and cost-effective 

to conduct. Their main disadvantage is known as the “cohort effect”: any difference 

between younger and older participants may not necessarily be due to age, but can be 

caused by the two cohorts being exposed to different experiences (Alwin, 2009). One 

well-documented cohort effect is the Flynn Effect (Flynn, 1996, 2007; Schaie et al., 2005), 

which posits that the steady increase in fluid intelligence between generations observed 

in the second half of the 20th century are (in part) explained by improved educational 

levels. The cohort effect also seems to refute what is often known as the “stability despite 

loss paradox”; a (largely cross-sectional) finding suggesting that older adults are 

generally more satisfied with their lives than younger adults, despite experiencing more 

“loss” such as loss of health or loss of loved ones (Kunzmann et al., 2000). Several studies 

have since shown that there is, in fact, an age-related decline in life satisfaction, but that 

this had previously been masked by cohort effects: the participants of many papers 

pointing to a wellbeing-paradox were born in Europe in the first half of the twentieth 

century. To them, their lives in older age were more stable and prosperous than when 

they were young and affected by the traumas of war (Kunzmann et al., 2000; López Ulloa 

et al., 2013). It has therefore been suggested that, as the experiential gap between 

generations narrows in Europe (which has now seen an unprecedentedly long period of 

peace), the frequency and magnitude of certain types of cohort effects should decline in 

European samples (Ganguli, 2017). Of particular relevance to this thesis is a cohort effect 

of brain volume: studies have documented generational drifts in body weight and brain 

weight (Resnick et al., 2000), making cross-sectional investigations of morphometry 

prone to obscuring the true rate of age-related brain changes (Sigurdsson et al., 2012). 
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Cross-sectional results therefore need to be interpreted with reference to the likelihood 

that the associations found could be due to cohort effects. Questions such as “Is the 

younger generation less prone to smoking but more affected by obesity?” or “Has the 

older generation been more exposed to certain toxins?” can help contextualize cross-

sectional research findings and guide generalizability.  

In longitudinal samples, ageing-related differences can be measured within the same 

cohort, allowing researchers to differentiate between age effects and cohort effects. 

However, the quality of longitudinal results can be confounded by test-retest effects and 

selective attrition. The former refers to the learning that takes place when participants 

complete the same task more than once. It can look as though cognitive abilities have 

increased between two measurements occasions because re-doing the same test leads 

to improvements in test performance, masking cognitive decline that may, in fact, have 

occurred. Retest effects can be partially mitigated by using different tests to study the 

same construct over time (Lo et al., 2012) or by employing models which account for 

this issue (McCormick, 2021) . Selective attrition describes the problem that the kinds 

of participants who return to the lab for multiple test appointments differ from those 

who drop out in ways relevant to the research study (Burke et al., 2019). For instance, in 

ageing studies, attrition was found to most likely occur in older, male participants who 

were more socially isolated and showed more cognitive decline than their peers 

(Jacobsen et al., 2021). This is problematic (particularly when not using FIML or other 

methods to handle missing data) because it skews the remaining, analysable sample 

towards more high-functioning participants, potentially biasing the interpretability and 

generalizability of the findings. Oversampling and statistical approaches such as 

propensity score modelling, FIML (see above) and inverse probability weighting can be 

used to adjust the original dataset via matching or weighting in accordance with non-

response or attrition bias, thus allowing results to be generalised back to the original 

cohort (Austin & Stuart, 2015; Eerola et al., 2005; Seaman & White, 2013; Wooldridge, 

2007). Despite these challenges, longitudinal data have many advantages. When 
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analysed appropriately (see below) they can shed light on the temporal (and, under 

certain conditions, causal) dynamics underlying brain and cognitive ageing.  

1.3.2.2  Analysing longitudinal data  

To investigate brain and cognitive ageing it is, in principle, possible to just perform 

separate multiple regression analyses (one per measurement occasion), and to calculate 

the expected rate-of-change score from the respective differences (see Sullivan et al., 

1995 as an example). However, many researchers have discussed the limitations using 

observed rates of change as outcome variables (Finkel et al., 2003; McArdle, 2012). Latent 

Change Score Models are better suited to address hypotheses about temporal, 

interactive dynamics over time.   

Latent Change Score Models (LCSMs) are a powerful and flexible class of Structural 

Equation Models. They have been used to describe a large variety of temporal effects in 

cognitive neuroscience, such as the transfer of cognitive training beyond item-level 

cognitive ability (Schmiedek et al., 2010) or that white matter changes are associated 

with declines in fluid intelligence in older adults (Köhncke et al., 2016; Ritchie et al., 

2015). Several tutorials are available explaining LCSMs in detail (Ghisletta & McArdle, 

2012; Kievit et al., 2018; Zhang et al., 2015); below I will provide a brief description of the 

core aspects of these models and how LCSMs can be used to study cognitive and 

morphometric change.  

Defining differences between measurement occasions (each comprised of observed 

scores or latent scores at each time point) as a latent change score factor (Δ) and then 

adding a regression parameter (β) to the change score yields two interesting parameters, 

which are of interest when investigating neurocognitive ageing or development. First, 

one can detect whether there is a reliable average change between time-point 1 and 

time-point 2 (captured by the mean of the latent change factor; Δμ – although note that 

this necessitates using a covariance instead of a regression to ensure the mean change 

is not conditional on the autoregressive effects). Second, the variance of the change 
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factor (Δσ2) captures the extent to which individuals differ in the change they manifest 

over time. Once these parameters are in place, models can be constrained in different 

ways to test specific hypotheses (as described in 1.3.1 above). To properly investigate 

brain and cognitive ageing, one would want to simultaneously model longitudinal 

cognitive changes, longitudinal morphometric changes, and their interrelationship over 

time. This is easily achievable using LCSMs by including more than one longitudinal 

variable in the model. Investigating this cross-domain coupling captures the extent to 

which change in one domain (e.g., cognition) is a function of the starting level of or 

changes in the other (e.g., grey-matter volume). What is so compelling about this 

modelling technique is that it provides a powerful analytic framework for testing a wide 

range of hypotheses in a principled and rigorous manner. The following section will 

explore the extent to which this process allows researchers to not just detect and 

describe observational effects but to make inferences regarding their chain of causation.  

1.3.3 Causal inference  

According to the philosopher Thomas Kuhn, the birth of the Scientific Method can be 

traced back to the first half of the nineteenth century, when two developments – 

separated for over two hundred years by opposing schools of thought – finally merged 

(Kuhn, 2011). One, defined by figures such as Galileo Galilei and Thomas Hobbes, was 

the axiomatic-deductive style of the geometric tradition; the classical sciences of 16th 

and 17th century astronomers and mathematicians. The second, initially advocated for 

in the 1640s by Robert Boyle and then elevated to fame by Francis Bacon’s 

thermodynamics in the 1800s was that of experimentation (Radder, 2009). The marriage 

of mathematics and experiments gave rise to statistics, and in doing so provided the 

world with the tools to not just describe natural phenomena, but to understand how one 

thing affects another – in other words, to infer causality.  

Until today, the best way to detect causation is through well-controlled, randomized 

experiments. In ageing or developmental neuroscience, such studies are, however, not 

only expensive, and time-consuming to run – manipulating the independent variable is 
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simply not always possible. It would be unethical to assign children to different levels 

of adversity, unlikely to change multiple aspects of people’s lifestyle and impossible to 

increase the size of a person’s pre-frontal cortex. And yet, researchers are interested in 

how adversity affects development, how social, intellectual, and physical engagement 

affect mental health, and whether brain volume explains cognition.  

What framework and principles should we apply to determine the likelihood that the 

“associations” found in observational studies do, in fact, reflect a causal effect? What are 

the necessary and sufficient conditions to infer causality and, consequently, to translate 

scientific findings into tangible recommendations and policies?   

As discussed in Sections 1.3.1. and 1.3.3., Structural Equation Modelling provides 

researchers with the tools to derive model-based predictions of causal hypotheses, and 

examine the extent to which the data (dis)confirms these hypotheses (Bollen & 

Diamantopoulos, 2017). This approach, however, comes with its own challenges, most 

fundamentally that of model equivalence, also known as the “underdetermination of 

theory by data”. The problem is that even a well-fitting model does not provide 

conclusive evidence for the causal hypotheses posited by the model (Kievit et al., 2018). 

This is because any observed data pattern is compatible with many different data 

generating mechanisms (Raykov & Penev, 1999). In other words, whereas alternative 

models almost always lead to differences in model fit, equivalent models are different 

representations of the model structure that result in exactly the same model fit. Such 

models can, therefore, not be distinguished by model fit indices alone. Another issue is 

that modelling choices (such as how to deal with missing data or which variables are 

allowed to covary in the model) can affect the results, and therefore the interpretation 

of causal direction (Usami et al., 2016). Thus, I would argue that although SEM-based 

techniques offer tools to infer causality from observational data under specific and 

sometimes implausible assumptions, such an approximation is not sufficient for 

drawing causal conclusions. Instead, high-quality, large-sample models should be 

combined with and integrated into highly plausible theoretical mechanisms. This 

requires a solid understanding of such mechanisms, served ideally by collaborations 
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that span different (sub)fields. In other words, solid models are necessary, not sufficient, 

to infer causality, a convincing integration of observational and 

experimental/mechanistic science, however, can be. 

A successful example of such integrative work is the impairment of working memory 

(the temporal holding of information in anticipation of further processing) in 

schizophrenia. First, neuroimaging studies (several of which used SEM, e.g., Schlösser 

et al., 2003) found that activity in the pre-frontal cortex predicted working memory 

abilities in patients with schizophrenia. Then, EEG recordings in humans and monkeys 

revealed that low gamma oscillations were associated with impaired working memory 

(Haenschel et al., 2009). Moreover, histological studies reported that structural 

deficiencies in inhibitory GABA neurons underlie this dysfunction (Lewis et al., 2012). 

Finally, administering GABA receptor antagonists to reduce GABA uptake in the pre-

frontal cortex of rats impaired their spatial reference and short-term memory (Auger & 

Floresco, 2015) 

Such trans-disciplinary results provide sufficient evidence that it is indeed a GABA 

neuron deficiency in the frontal cortex that causes working memory problems in 

schizophrenia patients, opening avenues for future research into both the 

understanding of the disease (and, arguably non-impaired working memory functions) 

and possible treatment options. For example, a recent paper showed that modulating 

frontal gamma oscillations improved working memory in schizophrenic patients (Singh 

et al., 2020). Similarly strong converging sources of evidence stem from research 

suggesting that physical activity slows down age-related cognitive decline, a topic I 

discuss in detail in Chapter 4. I then return to the questions of causal inference, the 

promises of integrative neuroscience and what suffices as strong-enough evidence to 

inform policy making in Chapter 5 (the General Discussion). 
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1.3.4 Obtaining brain structure data: pipelines and pitfalls  

As mentioned above, obtaining, organizing, and sharing large-sample neuroimaging 

data comes with a host of challenges. One issue lies in the extraction of meaningful and 

reliable information from the raw brain images. In human structural neuroimaging, 

there are generally two ways to achieve this: voxel-based- techniques and surfaced-

based techniques.  

Voxel-based morphometry (VBM) analyses first match MR images in a common 

space (a process called spatial normalization to a group template) to establish voxel-for-

voxel correspondence across participants. This process involves warping the images in 

a non-linear manner, whereby voxels (MR’s units of brain tissue, typically 1mm x 1mm x 

1mm in size for T1-weighted images) are stretched or compressed to align participants’ 

brains into the same space. This process creates a deformation field which is a map of 

how each voxel in the input (native) image must move to land at the matching point in 

the template image. This deformation is applied to the native image to create an image 

that is in voxel-for-voxel registration with the template. The deformed image is then 

segmented into tissue classes (such as grey matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF)) based upon the intensity in the image (which depends on the 

MRI contrast, e.g., T1-weighting), as well as tissue class priors, which indicate the 

likelihood of finding a given tissue class at a given location in the template space.2 Thus, 

VBM estimates the proportion (or density) of each type of tissue in each voxel. By 

modulating (inverse-scaling) these proportions by the amount of stretching or 

compression needed to warp to the template space, one can estimate the volume of each 

tissue type in the original, native image. Normally (and in this thesis), one only 

investigates the GM tissue class. The modulated, segmented GM image is then spatially 

smoothed (e.g., with a Gaussian filter of full-width-at-half-maximum of 8mm) to 

 
2 In fact, the stages of normalisation and segmentation are intertwined, and for the Cam-CAN data analysed in 
this thesis, they are implemented in a single, iterative stage, rather than being sequential, using “unified 
segmentation” (Ashburner & Friston, 2005) 
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increase overlap between participants (since the above spatial normalisation is not 

perfect) and to facilitate parametric statistics (e.g., by central limit theorem).  

Although VBM has been instrumental to our understanding of brain structure, it comes 

with some limitations (Davatzikos, 2004). Most importantly, the estimation of local GM 

volume does not always relate directly to the macrostructure of the biological brain. 

Furthermore, imperfections in the registration of native images to the same template 

can influence the volume estimates, i.e., unaccounted individual differences in brain 

shape can be confounded with individual differences in volume of the corresponding 

anatomical structures (Bookstein, 2001) . Finally, while VBM is an efficient way to search 

a whole image (across all voxels), statistics on smoothed images ignore discrete 

boundaries between distinct anatomical structures. On the other hand, while some 

discrete brain structures (e.g., subcortical nuclei) can be delineated on T1-weighted 

images of individual brains (traditional volumetry, whether manual or automated), this 

does not apply to T1 imaging of the cortex, which has few anatomical features with 

which to subdivide (i.e., features that unambiguously define functionally separate sub-

regions). 

Furthermore, the cortex is a convoluted 2D surface that happens to be embedded within 

a 3D space, which is ignored in estimates of total volume of GM within each voxel. Other 

computational approaches use the MRI-contrast between GM and WM, and between 

the GM and CSF, to estimate a surface directly, from which one can extract metrics like 

cortical thickness and cortical surface area, taking into account the precise folding of 

the cortex (Lövdén et al., 2013a). Because VBM’s estimate of GM volume reflects a 

mixture of morphological properties (e.g., thickness, surface area and degree of cortical 

folding), it may miss important biological (morphological) features. Indeed, as will be 

discussed further in Chapter 3, cortical thickness and surface area appear to have 

dissociable relationships with ageing and cognition. This is consistent with other 

evidence that cortical thickness and surface area are genetically independent (Panizzon 

et al., 2009, Winkler et al., 2010).  
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There have been recent improvements in such surface-based analyses (SBA), 

particularly in automated extraction of the cortical surface. The surface boundary 

between cortical white matter and cortical grey matter known as the white surface; this 

represents the inner boundary of cortex. The boundary between the grey matter and 

dura and/or CSF; this is referred to as the pial surface. The cortex is modelled as a 

tessellated surface comprised of triangles. Each triangle is known as a face. The point 

where the corners of the triangles meet is called a vertex. The parameters of the model 

are the coordinates (i.e., the X, Y, and Z) at each vertex. Once the coordinates of each 

vertex are known, the surface can be rendered as a surface embedded in 3D. From here, 

one can compute a variety of morphometric measures.  

There are several software packages available for both VBM and SBA analyses. The most 

common ones – and the ones used in this thesis – are Statistical Parametric Mapping 

(SPM, www.fil.ion.ucl.ac.uk/spm) for VBM and FreeSurfer 

(surfer.nmr.mgh.harvard.edu) for SBA. One important advantage of these tried-and-

tested, widely-used pipelines is the comparability of high-quality imaging metrics across 

studies: two entirely different labs can extract very similar information from their brain 

scans so long as they both employ the same software, making data sharing much easier. 

This (unlike, say, manual segmentation) also makes results reproducible, as the same 

input data will yield the same output metrics. The downside is that the field then focuses 

on the few readily available measures, mainly grey-matter volume, and cortical 

thickness. However, not only is there much more to the brain than its volume and 

thickness, but it is, in fact, possible to extract a host of additional metrics from T1-scans, 

especially using SBA: different groups have assessed, for instance, the depth of the 

brain’s sulci or the degree of cortical curvature. The challenge is obvious: although such 

metrics are likely to contain interesting and novel information regarding the (ageing) 

brain, as they are not part of the standard pipelines’ output, they are less readily 

available. One pipeline recently developed to this end is Mindboggle, a FreeSurfer-based 

tool which extracts a total of 12 imaging metrics (Klein et al., 2017). As will be discussed 

in Chapter 3, these metrics correlate differently with age and cognitive abilities, and 
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explain additional variance in both phenotypes, making them useful tools to investigate 

the ageing brain.  

1.3.5 Introduction to cohorts  

This thesis analyses two large-sample, publicly available neuroscientific datasets. While 

both cohorts are discussed in more detail in the relevant methods sections of the 

empirical chapters, I will briefly outline the samples’ key features here.  

The Cambridge Centre for Ageing and Neuroscience (Cam-CAN; https://www.cam-

can.org/) project, supported by UK and EU funding bodies3, was launched in 2010 with 

the goal to better understand the epidemiological, cognitive and neuroimaging 

correlates of healthy ageing. In Stage 1 of data collection, 3000 participants aged 18 and 

over were recruited via local GP surgeries in Cambridge city, and then contacted in 

person in an opt-out procedure. If agreeable, they then undertook a 2-hour home 

interview about demographics and lifestyle (Shafto et al., 2014). A subset of 700 

cognitively and psychiatrically healthy adults aged 18-87 (100 people per age decline) 

continued to Stage 2 to undergo cognitive testing and functional and structural 

neuroimaging (Taylor et al., 2017). Cognition was assessed across multiple cognitive 

domains including attention and executive control, language, memory, emotion, action 

control and learning. Structural MRI data was processed with SPM and FreeSurfer 

(described in section 1.3.5), yielding canonical brain structure metrics including volume, 

surface area and cortical thickness. Stage 3 of the Cam-CAN data collection asked 280 

adults from Stage 2 to return for further cognitive and neuroimaging assessments. These 

participants (N=261) thus have repeated measures (there was a time interval between 

an average of 1.3 years (sd = 0.66 years) between the two waves on average) and 

represent the longitudinal subsample within this cohort.  

 
3 The Cam-CAN project cost approximately £6 million ($8.2 million), resources no one lab would be able to 
afford. As of Dec 2021, the dataset has been requested by over 1000 research groups worldwide, making this a 
good example of the importance and usefulness of large-sample, openly available neuroimaging samples.   
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The Lifespan Changes in Brain and Cognition (LCBC; https://www.oslobrains.no/) 

consists of a series of studies investigating age-related changes in brain and cognition 

in relation to risk and protective factors of cognitive decline and dementia. The dataset 

contains rich cognitive, multimodal neuroimaging, physical and epidemiological 

information from approximately 2700 adults aged 20-89. Participants were recruited 

using advertisements in local newspapers and webpage adverts (de Lange et al., 2016). 

LCBC was collected with a focus on longitudinal data, which is available (in multiple 

waves) for approximately 1800 adults. I analysed a subset of these data (N=1236) for 

whom FreeSurfer metrics and fluid cognition measures were available.  

Both Cam-CAN and LCBC are part of Lifebrain (https://www.lifebrain.uio.no/), an EU 

Horizon 2020 funded project which seeks to bring together and harmonize data from 

6000 European research participants collected in seven countries. Access to Lifebrain 

data can be applied for by external researchers: 

https://www.lifebrain.uio.no/about/access-to-data/. 
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1.4 Cognitive and brain ageing: brief literature review  

Having discussed the methodological background of this thesis, the following sections 

will provide a summary of some of the psychological and neuroscientific concepts 

underlying the subsequent empirical chapters.  This brief literature review will tackle 

four key questions in the field of cognitive ageing:  

i. How does cognition change with age?  

ii. How does brain structure change with age?  

iii. What theories might explain the inter-individual differences in cognitive and 

brain ageing?  

iv. What is the relationship between (modifiable) lifestyle activities and cognitive 

ageing?  

1.4.1 Age-related changes in cognitive abilities  

According to the two-component model of general intelligence, human cognition is 

comprised of fluid cognitive abilities and crystallized cognitive abilities (Baltes et al., 

1980; Cattell, 1943; Horn & Cattell, 1967). Crystallized ability denotes the ability to 

perform cognitive tasks based on “skilled judgment habits”, that is, habits that have 

been learned, and hence “crystallized”. Examples include the acquired knowledge about 

the world, vocabulary, or the acquired skill to perform mental arithmetic. In contrast, 

fluid ability is relevant “in tests requiring adaptation to new situations, where 

crystallized skills are of no particular advantage” (Cattell, 1963). Typical examples of 

fluid abilities are knowledge-independent reasoning skills, perceptual speed, working 

memory, and episodic memory. Crystallized and fluid cognitive abilities have long been 

recognized to follow different development trajectories across the lifespan (Horn & 

Cattell, 1967; Wang & Kaufman, 1993). As shown in Figure 1-1, crystallized intelligence 
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tends to increase throughout most of a person’s lifetime, often plateauing in old age. 

Fluid intelligence peaks relatively early (mid to late twenties; McArdle et al., 2002) and 

then declines steadily.  

 

Figure 1-1: Fluid and crystallized ageing. Crystallized and fluid cognitive abilities follow different 
developmental trajectories across the adult lifespan. Figure shows data from cognitively healthy 
participants in Cam-CAN (N=708) aged 18-88, described further in Chapter 2. 

 

Although this pattern of cognitive decline is well supported in the literature of healthy 

ageing – that is, by studies investigating people not diagnosed with dementia or MCI 

(Finkel et al., 2003; Ghisletta et al., 2012; Hedden & Gabrieli, 2004), a more recent meta-

analysis suggest that fluid and crystallized abilities, in fact, decline in a correlated 

manner (Tucker-Drob et al., 2019). Moreover, longitudinal analyses have shown that for 

participants who later go on to develop dementia, however, fluid and crystallized 

abilities decline (Grober et al., 2008; Howieson et al., 2008). In one study, the onset of 

accelerated decline for fluid and crystallized abilities occurred approximately 10 and 5 

years before diagnosis, respectively (Thorvaldsson et al., 2011). Thus, although fluid 

abilities begin to decline before crystallized abilities, these changes are difficult to tease 

apart from the “normal” changes in fluid abilities occurring in healthy adults. 

Conversely, the detection of crystallized decline has been proposed as a cognitive 

marker for the early (prodromal) stages of dementia (Thorvaldsson et al., 2011).   
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It is worth noting that the two-factor model described above is unlikely to fully capture 

human cognitive abilities, but that cognition can be usefully divided along more than 

two dimensions. For example, there is evidence that aspects of memory ability remain 

after accounting for fluid abilities, suggesting that individual differences in memory 

exist beyond those along fluid and crystallized dimensions (Henson et al., 2016). 

Nonetheless, for this thesis, the two-factor fluid-crystallised model suffices as a broad 

summary of individual differences in cognitive abilities.  

1.4.2 Age-related changes in brain morphology  

1.4.2.1  MRI-detectable brain ageing  

When assessed post-mortem, the most striking difference between a younger person’s 

and an older person’s brain is that the latter is much smaller. This wide-spread age-

related brain shrinkage is caused by losses in both white matter and grey matter 

(Sigurdsson et al., 2012). Grey-matter atrophy is most pronounced in the hippocampus, 

caudate nucleus, association cortex, cerebellum, and the medial temporal lobe, while 

less atrophy is seen in other cortical regions such as the entorhinal cortex and the 

primary visual cortex (Jiang et al., 2014; Raz, 2005; Salat, 2011; Salat et al., 2004). Cross-

sectional studies likely underestimate the rate of change: in one large-sample study, the 

yearly difference with age in grey- and white-matter volume in cross-sectional data 

(N=4303) was approximately 40 percent less than the annual change in that study’s 

longitudinal data (N=367; Sigurdsson et al., 2012); a pattern also found elsewhere (Raz, 

2005; Raz et al., 2003). Longitudinal estimates suggest that whole brain grey matter 

declines 0.6 percent per year in normal (i.e., nonclinical) ageing individuals aged 55-90 

(Barnes et al., 2009; Sigurdsson et al., 2012). However, the shape of this decline is still 

subject of debate, i.e., whether it accelerates (Driscoll et al., 2009; McDonald et al., 2009; 

Scahill et al., 2003; Walhovd et al., 2005), accelerates to a plateau (Schuff et al., 2012) or 

remains relatively constant (Allen et al., 2005; Fjell et al., 2009; Jack et al., 2008).  
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Alongside shrinkage, the ageing brain undergoes a series of other MR-detectable 

structural transformations: Sulci widen while also becoming shallower (Kochunov et al., 

2005); the cortex becomes more curved (Wang et al., 2019); and the ventricular system 

expands (Jiang et al., 2014; Sigurdsson et al., 2012). As will be discussed in more detail in 

Chapter 3, how we measure MR-derived morphology impacts how well we can describe 

and understand this ageing brain metamorphosis, and the extent to which these 

structural changes explain cognitive decline.  

1.4.2.2 Mechanisms of brain ageing  

What neural mechanisms might underlie these structural brain changes? While I do 

not, in this thesis, investigate the biological substrates of brain ageing directly, I think 

it is crucial to use mechanistically plausible hypotheses to guide the interpretation of 

brain imaging studies. Chapters 3 and 4 show how MR-derived imaging metrics can be 

harnessed to this end, discussing the neural mechanisms of cognitive decline and 

exercise-induced cognitive improvements, respectively. The General Discussion 

(Chapter 5) explores how integrative neuroscience might provide answers to some of 

the largest open questions of how the mind and the brain age. The subsequent 

paragraph is meant to provide a very brief overview of the basic molecular and cellular 

mechanisms underlying brain ageing.  

Until the latter half of the 20th century, neuronal death was thought to be the principal 

driver of brain ageing (and, for that matter, of brain shrinkage (Bishop et al., 2010)). 

Today, scientists believe that the main reason for brain atrophy is the loss, or reduced 

arborization, of dendrites and axons (Yankner et al., 2008), causing neurons to shrink 

in volume, not necessarily in number. This, in turn, is hypothesized to be triggered in 

part by wide-spread chronic, age-related inflammation (a phenomena termed 

“inflammaging”; Frank-Cannon et al., 2009). An important source of 

neuroinflammation in the ageing brain are the proliferative glial cells (astrocytes, 

oligodendrocytes and microglia). These cells normally provide structural, metabolic and 

trophic support to neurons (Allen & Barres, 2009). However, they can also have 
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detrimental effects on neighbouring neurons due to the chronic production of pro-

inflammatory factors, including reactive oxygen species (ROS) and leukocyte-attracting 

cytokines, a process that occurs with increasing frequency during ageing (Chinta et al., 

2015).  

1.4.3 Theories of cognitive ageing  

The following sections describe three main theories which have been proposed to 

explain inter-individual differences and cognitive and brain ageing: i) cognitive reserve, 

ii) brain maintenance and iii) scaffolding. Note that these theories are not mutually 

exclusive; it has been argued that these (and other) theories should draw sharper 

conceptual boundaries in order to more reliably and usefully explain differences in  

cognitive ageing (Barulli & Stern, 2013). This section concludes with a summary of a 

more recently proposed neural mechanism of (healthy) cognitive ageing: the release of 

noradrenaline by the locus coeruleus.  

1.4.3.1 Cognitive reserve  

In 1988, a group of researchers at the University of California San Diego first described 

what became one of the greatest puzzles in cognitive neuroscience. They inspected 137 

post-mortem brains of residents of a nursing facility, whose cognitive abilities had been 

evaluated during life. To the researchers’ surprise, ten subjects who had maintained 

excellent (top quintile) cognitive performance until the very end of their lives had the 

same pathological features of some of their peers with Alzheimer’s disease (Katzman et 

al., 1988). The observation that a person can present with considerable brain pathology 

which point to symptoms of dementia, without, in fact, showing any such symptoms, 

has since been made by other post-mortem (Mortimer, 1997; MRC CFAS, 2001) and 

brain imaging (Bartrés-Faz & Arenaza-Urquijo, 2011; Giovacchini et al., 2019; Groot et 

al., 2018; Laubach et al., 2018; Neth et al., 2020) studies. 
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How can this apparent brain-cognition paradox, and individual differences in cognitive 

ability more generally, be explained? According to the theory of cognitive reserve  (Stern, 

2002, 2009), two possible neurobiological mechanisms are at play. The first is the 

efficiency of brain networks: more efficient, capable or flexible brain networks might 

allow for better cognitive function even in the presence of brain atrophy or pathology 

(e.g., Martínez et al., 2018). The second mechanism is compensation, whereby the brain 

accesses brain structures or networks beyond those normally used for a given task, when 

the latter are disrupted by pathology (Cabeza & Dennis, 2013). Cognitive reserve has 

been used to explain the epidemiological findings whereby education, occupational 

exposure and/or leisure activities are associated with reduced risk of dementia and 

slower rates of cognitive decline (see Robertson, 2014 for a review). However, others 

have argued that the concept of cognitive reserve has no operational definition, making 

it hard to directly investigate whether it does, or does  not, explain individual differences 

in cognitive ageing (Nilsson & Lövdén, 2018).  

1.4.3.2  Brain maintenance  

Regardless of the role of cognitive reserve, another reason that some older individuals 

show no, or little cognitive decline could simply be that they have relatively intact brains 

– that is, that there a match between (maintained) brain capacity and cognitive 

functioning. In other words, even if some people can maintain cognition despite 

dramatic brain changes (as in previous section), it is still generally good for cognition 

to keep the brain healthy. Older adults differ in the degree of cellular damage to brain 

structure, and according to the “brain maintenance” theory, these differences are 

reflected in an age-related increase in variability in cognitive function (Nyberg et al., 

2012). Whereas cognitive reserve denotes ways of coping with brain pathology, the 

maintenance theory focuses on the relative lack of brain changes or decline as key to 

preserved cognition in older age. Robertson argues that brain maintenance and 

cognitive reserve are closely related and complementary theories, as healthy ageing 

likely requires compensatory adjustments to small neural declines (Robertson, 2014). 
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One important question is whether brain maintenance is genetically pre-determined or 

whether individual choices during one’s lifetime affect the degree to which the brain 

can be “maintained”. Convincing evidence for the latter notion would come from 

observed improvements in a neural measure (such as cellular or neurochemical markers 

or MR-derived brain structure) being positively associated with changes in cognitive 

performance. Such change-change associations are still relatively rare and are discussed 

in more detail in Chapter 4. Briefly, there is evidence from structural imaging studies of 

“neural restoration” after both cognitive (Lövdén et al., 2010) and physical (Kramer & 

Erickson, 2007) intervention programs.    

1.4.3.3  Scaffolding    

The Scaffolding Theory of Aging and Cognition (STAC) has been developed to show 

how the combined effects of adverse and compensatory neural processes lead to inter-

individual differences in cognitive function (Park & Reuter-Lorenz, 2009). The theory 

posits that increased prefrontal cortex activation in older adults performing a 

cognitively challenging task (observed in some functional imaging studies, e.g., 

Gutchess et al., 2005) is a marker of an adaptive brain that engages in compensatory 

scaffolding in response to its structural decline. However, others have shown that 

increases in prefrontal activation do not reflect compensation, but rather reduced 

neural efficiency or specificity (Morcom & Henson, 2018). STAC would predict stronger 

levels of (white matter) connectivity and neurogenesis in brains which successfully 

“scaffold” (Reuter-Lorenz & Park, 2014). Compelling evidence for STAC would therefore 

stem from change-change studies, whereby increases in connectivity (in the presence 

of other structural decline) are associated with improvements of cognitive functioning. 

Perhaps because it is difficult to reliably measure and test this effect, no such 

longitudinal papers exist to my knowledge. If neural scaffolding does take place in the 

ageing brain, then just like for brain maintenance described above, the extent to which 

such a phenomenon can be influenced with medical, lifestyle or cognitive interventions 
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is an important question in the endeavour to slow down or prevent cognitive decline 

and dementia.   

1.4.3.4 The noradrenergic theory of cognitive ageing  

It can be difficult to operationally (let alone mechanistically) define, and therefore 

empirically test, the above theories.  The noradrenergic theory of cognitive ageing is 

based on a plausible biological mechanism, rather than simply an observed 

phenomenon (e.g., that some people seem to have intact cognitive abilities despite signs 

of atrophy; see above), making it a potentially useful lens through which to study 

cognitive and brain ageing. Note, this theory is not separate from the concepts described 

above – instead it has been proposed as a candidate neuro-mechanism of cognitive 

reserve (Clewett et al., 2016).  

The Locus Coeruleus (LC) is a small, elongated nucleus inside the brain stem. It is the 

brain’s sole source of noradrenaline (NA; also called norepinephrine): a neuromodulator 

which was thought to be mainly involved in the control of heart rate, sleep-wake cycles, 

and blood pressure, but which has since been understood to play an important role in 

regulating attention, memory, and other cognitive abilities (Sara, 2009). Noradrenaline 

is also neuroprotective: it lowers toxicity in neurons (Counts & Mufson, 2010) and can 

buffer brain cells from oxidative stress (Troadec et al., 2001). What motivates the LC to 

release this shield-like, cognition-enhancing chemical? Studies in rodents show that the 

LC-NA system is mobilized to face environmental challenges (see Sara & Bouret, 2012 

for a review): when confronted with, for example, an environmental stressor (such as a 

gate rapidly closing in a rat’s maze), the LC releases noradrenaline into the forebrain, 

activating an efficient and approportionate cognitive response to the stimulus (e.g., the 

rat changes direction). Some researchers have argued that novelty and environmental 

stimulation are the most reliable predictors of LC activation and, consequently, NA 

release (Duszkiewicz et al., 2019; Mather & Harley, 2016). For example, in rats, long-term 

environmental enrichment increased the presence of NA by 68 percent.  
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What might such noradrenaline-triggering stimuli look like in humans? A pioneering  

neuroimaging study (Murphy et al., 2014) found a LC BOLD response to an oddball task, 

a classic (fMRI) attentional paradigm where participants are infrequently confronted 

with an unusual (oddball) stimulus and have to respond using via finger-pressing. 

Moreover, Murphy and colleagues (2014) showed that the LC BOLD response covaried 

with increased pupil diameter, suggesting that pupil size can be used as a window into 

(LC-dependent) neural substrates of cognition (Joshi & Gold, 2020). An additional 

source of evidence that the LC modulates human cognition – and that this effect can be 

detected using MRI – comes from studies showing that LC integrity is associated with 

better cognitive abilities (e.g.,  Dahl et al., 2019). 

Normal (i.e., nonclinical) ageing is known to negatively affect the LC-NA system, as 

shown by LC cell loss (Manaye et al., 1995) and changes in LC MRI signal intensity 

(Clewett et al., 2016).  The LC is also often the first place where Alzheimer’s-related 

pathology appears, with most people who later develop Alzheimer’s showing at least 

some tau accumulation in their mid-20s (Braak et al., 2011). Finally, age-related 

reduction of LC structural  integrity, has been associated with impaired cognitive and 

behavioural function in Cam-CAN (Liu et al., 2020), suggesting that MR-derived LC 

measures can be used to capture individual differences in cognitive ageing.  

Based on these (and other) animal and human studies, the noradrenergic theory of 

cognitive ageing (Mather & Harley, 2016; Robertson, 2013) posits the following: the 

neuroprotective effects of noradrenaline released by the LC are partially responsible for 

preserving cognitive abilities in old age. Because novel, complex situations trigger the 

human LC-NA system, the more people engage in intellectually, physically and socially 

stimulating activities (see following section), the more NA will be released into their 

brains, protecting their minds from cognitive decline. Although enticing, this theory is 

based on several as-of-yet unconfirmed assumptions. Many open questions will need to 

be addressed, including: What, if any, real-life conditions trigger the LC-NA response? 

Do such triggers work throughout the lifespan or is NA more readily released in early- 

or mid-life? Does increasing the frequency of NA-release protect against, or even 
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prevent, age-related damage to the LC? Even if the LC-NA system partially accounts for 

individual differences in cognitive aging, how much of the variance does it explain? Even 

though the LC-NA system is not assessed in this thesis, I would argue that these (and 

other) questions provide specific, tangible avenues through which to test a 

mechanistically plausible theory of cognitive ageing, allowing the field to gain exciting 

and concrete insight into the ageing mind and brain.  

 

1.4.4 Modifiable lifestyle activities  

A theme already addressed in this introduction and investigated in Chapters 2 and 4 of 

this thesis is whether there is something one can do – ideally in early or mid-life – to 

slow down age-related cognitive decline. Might learning a musical instrument help, or 

joining a reading group, or volunteering for a local charity? In other words, does 

partaking in socially, intellectually, or physically stimulating activities help to maintain 

cognitive abilities in old age? Chapter 2 explores some of these questions by addressing 

a broad range of (possibly) modifiable lifestyle activities. Chapter 4 focuses on the 

association between physical health and cognition. The following sections are meant to 

provide a general backdrop against which to assess claims about the relationship 

between lifestyle and cognitive abilities.  

The best evidence for or against the benefit of modifiable lifestyle activities comes from 

randomized controlled trials (RCTs). This is because such intervention studies, if done 

carefully, allow for causal inferences. RCTs should ideally be targeted at seniors or adults 

in mid-life to ensure that the benefit of a modified lifestyle activity does not soley apply 

to younger adults, or that the beneficial activity must be engaged in for most of a 

person’s life.   

A systematic review of 24 such mid-life RCTs (addressing 10 personally modifiable 

factors, two of which were classified as “lifestyle”: mindfulness and social engagement; 

the other categories were nutritional supplements, prescription drugs, and dietary 
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factors) showed that most (lifestyle and other) interventions had no or very small effects 

on cognitive abilities (Lehert et al., 2015). Studies assessing the impact of intellectually 

challenging activities point to more consistent successes: a recent systematic review of 

cognitive training RCTs concluded that there is good evidence that mid-life cognitive 

training improves the trained cognitive task (especially processing speed) in healthy 

adults (Butler et al., 2018). However, these gains do not seem to generalise to domains 

not trained. As discussed in more detail in Chapter 4, the strongest evidence for lifestyle 

activity-induced improvements to cognitive abilities stems from studies investigating 

physical (especially aerobic) activity. According to a systematic review of 29 RCTs, 

aerobic exercise training is associated with improvements in attention, processing 

speed, executive function and memory (Smith et al., 2010).   

In the 2015 systematic review mentioned above, of the three included mindfulness RCTs 

(which assessed the effect of six months of Hatha yoga, qi gong, and tai chi, 

respectively), only the tai chi study reported significant improvements to cognitive 

outcomes (Lehert et al., 2015). Should that lead us to conclude that tai chi helps, while 

qi gong does not? Probably not. These results are an example of a larger problem in the 

field of cognitive ageing: the difficulty of disentangling possible mechanisms of 

causation from a host of relatively unspecific interventions (let alone from observational 

data). While clinical drug trials are based on biologically plausible mechanisms of 

disease (and its cure), a lifestyle RCT is usually launched based on results from (often 

observational) studies pointing to possible benefits said lifestyle activity. Exactly how or 

why tai chi – as opposed to qi gong – may improve cognition remains unknown. This, 

conversely, leaves no scientific explanation for the presence – or absence – of the 

benefits of (related) activities, crowding the field with mechanistically untestable (null) 

results, and creating an unsatisfying “collective shrug” situation: even if mindfulness 

activities like tai chi improve cognition, the mechanisms underlying this effect remain 

speculative. This limits our understanding of the effect and the possible magnitude of 

any benefit to cognition, making it difficult to specify recommendations to clinicians or 
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policy makers. (A successful translation of scientific findings into policy is, surely, the 

ultimate goal of this area of research).  

What would help is a third variable: rather than just assessing the effect of an 

independent variable (e.g., tai chi) on a measured outcome (e.g., cognition), the 

presence of a third (biologically meaningful) marker variable would make the possible 

benefits of a lifestyle activity measurable and tangible. Such biomarkers could be MR-

derived (for instance, one study on tai chi found increases brain volume in the treatment 

compared the active control group) but are ideally one level further down in the chain 

of causation. Measures of the LC-NA system outlined in the previous section are an 

example of mechanistically plausible third variables.  I discuss another such marker – 

brain derived neurotrophic factor – and its causal role in the relationship between 

aerobic exercise and cognitive abilities in Chapter 4. That chapter also tests the utility 

of MR-derived metrics as mediators in the lifestyle-cognition relationship. Generally, 

the presence of a well-understood biomarker would move the focus of investigation 

away from asking “Does modifiable Activity X improve cognition?” to instead exploring 

whether Activity X taps into (or activates) a well-understood neural mechanism of 

cognitive maintenance or improvement.  

A final problem with RCTs is that they are expensive to run for longer periods of time, 

and thus it is possible that any trial-caused outcomes are only temporary and short-

lived. Ideally, one would track the consequences of an intervention in mid-life, say, over 

the subsequent 2-3 decades, to see whether it really affects normal ageing. I am not 

aware of any such RCTs. In the absence of these prospective studies, the best one can 

do is investigate the cognitive or brain health of people in late life as a function of 

retrospective questionnaires about what lifestyle choices those people made 2-3 decades 

earlier (see Chapter 2, and Borgeest et al., 2020; Chan et al., 2018).  

To summarize, even high-quality RCTs of potentially modifiable lifestyle activities come 

with important weaknesses. First, intervention studies often differ in their design and 

results, making it difficult to contextualize and generalise their findings. Second, RCTs 
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rarely offer mechanistic explanations of the effect under investigation, making it 

difficult to accurately interpret (null) results and translate their findings into tangible 

policies. Despite these issues, it is, I think, imperative to investigate if and how 

modifiable activities attenuate cognitive decline: Population ageing poses a real risk to 

individuals and societies alike – in the absence of a “cure for ageing”, cognitive decline-

prevention strategies are the best chance we have at ensuring that living a longer life 

means also living a healthy one.  

 

1.5 Summary and outlook on subsequent chapters  

This General Introduction described the societal, methodological, and scientific      

context in which this PhD is embedded: the rapidly ageing global population, the 

promises of “Big Data” in cognitive neuroscience, the statistical and neuroimaging 

approaches employed in this thesis, and the possible reasons for (individual differences 

in) age-related cognitive decline.  The subsequent empirical chapters hope to contribute 

to this scientific landscape in the following ways: Chapter 2 explores the relationship 

between a broad range of lifestyle factors and people’s cognitive abilities. While cross-

sectional and observational in nature, it offers well-powered and well-modelled 

evidence for potentially accumulative benefits of engaging in multiple theoretically 

modifiable aspects of lifestyle. Chapter 3 focuses on brain structure, showing how large 

neuroimaging datasets can be harnessed to capture ageing in previously often 

overlooked ways. Chapter 4 assess lifestyle, brain structure and cognitive ageing 

simultaneously by exploring the cross-sectional and longitudinal mediating role of 

morphometry in the relationship between physical and cognitive health. Finally, the 

General Discussion (Chapter 5) discusses this thesis’s findings, strengths, and 

limitations in the context of the existing literature, as well as with regards to the 

translatability of this research into policy recommendations.  



Summary and outlook on subsequent chapters  51 

 

 

  



52 Greater lifestyle engagement is associated with better age-adjusted cognitive abilities 

 

Chapter 2: Greater lifestyle engagement is 

associated with better age-adjusted cognitive 

abilities 

2.1 Chapter Summary  

Previous evidence suggests that modifiable lifestyle factors, such as engagement in 

leisure activities, might slow the age-related decline of cognitive functions. Less is 

known, however, about which aspects of lifestyle might be particularly beneficial to 

healthy cognitive ageing, and whether they are differentially associated with distinct 

cognitive domains (e.g. fluid and crystallized abilities). I investigated these questions in 

the cross-sectional Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data (N 

= 708, age 18–88), using data-driven exploratory structural equation modelling, 

confirmatory factor analyses, and age-residualized measures of cognitive differences 

across the lifespan. Specifically, I assessed the relative associations of the following five 

lifestyle factors on age-related differences of fluid and crystallized age-adjusted abilities: 

education/SES, physical health, mental health, social engagement, and intellectual 

engagement. I found that higher education, better physical and mental health, more 

social engagement, and a greater degree of intellectual engagement were each 

individually correlated with better fluid and crystallized cognitive age-adjusted abilities. 

A joint path model of all lifestyle factors on crystallized and fluid abilities, which allowed 

a simultaneous assessment of the lifestyle domains, showed that physical health, social 

and intellectual engagement, and education/SES explained unique, complementary 

variance, but mental health did not make significant contributions above and beyond 

the other lifestyle factors and age. The total variance explained for fluid abilities was 

14% and 16% for crystallized abilities. My results are compatible with the hypothesis that 
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intellectually and physically challenging as well as socially engaging activities are 

associated with better crystallized and fluid performance across the lifespan. 

The work in this chapter was published in (Borgeest et al., 2020).  

2.2 Introduction  

Cognitive abilities are known to decline with age (Harada et al., 2013; Salthouse, 2009). 

The extent to which leading an active lifestyle can slow down this decline has been 

debated in the literature, with some studies associating physical, intellectual and social 

activities with cognitive and neural health while others did not find such relationships 

(Bielak et al., 2007; Bosma et al., 2003; Chan, Shafto, Kievit, Matthews, Spink, 

Valenzuela, & Henson, 2018; Clare et al., 2017; Gow et al., 2017; Lövdén et al., 2005; 

Newson & Kemps, 2005; Small et al., 2012a). In this chapter, I address three concerns 

regarding the possible associations between lifestyle and cognitive age-adjusted 

abilities. 

First, the relationship between lifestyle and cognition has predominantly been studied 

by assessing lifestyle activities separately (e.g., by focusing on physical health or social 

engagement, but rarely both). Previous studies which have assessed various aspects of 

lifestyle have tended to rely on separate linear regressions (Clare et al., 2017; Crowe et 

al., 2003; Gow et al., 2012), mediation analyses (Brown et al., 2016 ) or sum scores (Karp 

et al., 2006; Newson & Kemps, 2005) for their analyses, limiting the extent to which the 

multidimensionality of people’s lives can be captured, and possible complementary 

benefits of lifestyle detected. Thus, unless these factors are analysed mathematically 

simultaneously, it remains an open question as to whether individual lifestyle factors 

will ‘sum up’ to demonstrate incremental benefits, or rather be redundantly associated 

with better outcomes (see also Kremen et al., 2019). The structural equation modelling 

approach, outlined below, addresses this gap in the literature by offering several benefits 

compared to previous approaches. First, I model both cognitive and lifestyle factors as 
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latent variables, which abstracts away from individual variables whilst reducing 

measurement error associated with simple sum scores. Latent variables widen the 

interpretability of lifestyle-cognition associations to activity types (for instance ‘social 

activity’) instead of individual activities (e.g., ‘attending church’). Moreover, I model 

multiple lifestyle factors within the same large healthy sample, allowing me to compare 

effect sizes. Most uniquely, the structural model captures the simultaneous effect of 

multiple latent lifestyle factors on cognitive lifespan differences, allowing me to 

investigate whether associations of specific lifestyle domains remain after taking into 

account distinct, but correlated, lifestyle factors. 

Second, little is known about whether different aspects of cognition are associated 

differently with lifestyle engagement. Following a distinction first made by Cattell 

(Cattell, 1943), cognitive abilities can, at their broadest level, often be grouped into fluid 

and crystallized abilities (although newer, more detailed conceptualizations are 

available, Schneider & McGrew, 2012, I focus on fluid and crystallized for their 

importance in theories of cognitive ageing). Fluid intelligence refers to the ability to 

solve novel problems in the absence of task-specific knowledge or experience. It predicts 

important life outcomes such as expected income or work performance (Gottfredson & 

Deary, 2004). Age produces a marked impairment in fluid intelligence; a decline that 

begins in early adulthood (see Schaie, 1994 for a review). Moreover, recent findings have 

demonstrated that individual declines in fluid intelligence are highly correlated with 

individual declines in the ability to live and function independently (Tucker-Drob, 2011). 

Crystallized intelligence refers to acquired knowledge about the world (such as 

vocabulary) and shows more modest changes with age than fluid intelligence, typically 

declining only in old age (i.e. after the late sixties; Salthouse, 2000). One open question, 

addressed here, is whether crystallized and fluid abilities, known to differ in their 

lifespan trajectories, also benefit differently from measures associated with better 

cognitive ageing. 

Third, it has been difficult to reliably identify those lifestyle activities that enhance 

cognitive reserve, as is demonstrated by the considerable heterogeneity of findings in 
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the literature (Kralj et al., 2018). This is likely to be due to at least two reasons. One 

concerns the large diversity of lifestyle variables that have been assessed, with studies 

differing on the types of activities that make up, say, social engagement. A second 

explanation is the variable and often imprecise definition of ‘healthy ageing’ in cross-

sectional studies. For instance, many cross-sectional studies rely on classifying groups 

of people according to their absolute performance on cognitive tests (e.g., Folstein et 

al., 1975; Taylor et al., 2017). In such an approach, older individuals who score an 

arbitrary number of standard deviations above a task mean are labelled ‘healthy’, 

‘successful’, or in some cases even ‘super’ agers (Gefen et al., 2014; Harrison et al., 2012; 

Lin et al., 2017; Rogalski et al., 2013; Sun et al., 2016), while those beneath this cut-off 

point are considered to age only ‘normally’ or ‘poorly’. Here, I conceptualize ‘healthy 

ageing’ in terms of ‘age-adjusted cognitive abilities’, by using a simple continuous age-

residualized measure, which I describe in more detail below. This measure avoids the 

drawbacks of arbitrary statistical cut-off points and dichotomisation (McClelland et al., 

2015), and allows for a natural conceptualization of age-adjusted cognitive abilities, 

namely whether an individual is performing better or worse than would be expected at 

her age. 

2.2.1 The present study  

Although enhanced physical, mental and social lifestyle factors have all been associated 

with healthier cognition, these effects have predominately been investigated separately 

(e.g., by looking at physical health or social engagement, but rarely both). Simultaneous 

analysis of these associations would shed more light on the possible complementary 

benefits of various aspects of people’s lives. Moreover, understanding if lifestyle is 

associated differently with crystallised and fluid cognition is important in order to shape 

effective interventions. I therefore investigated the simultaneous associations between 

various aspects of lifestyle and both fluid and crystallized resilience. I used a large (N = 

708) age-heterogeneous population-based sample from the Cambridge Centre for 

Ageing and Neuroscience (Cam-CAN), employing age-residualized measures of 
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cognition, data-driven exploratory structural equation modelling and confirmatory 

factor analysis.  

 

2.3 Methods 

2.3.1 Participants 

Participants were drawn from the Stage 2 sample of the Cambridge Centre for Ageing 

and Neuroscience (Cam-CAN) dataset, described in more detail in the Chapter 1 of this 

thesis as well in in other papers (Shafto et al., 2014; Taylor et al., 2017). 708 people (359 

women, 349 men) were recruited, including approximately 100 people in each decile 

(age range 18–88, M = 53.4, SD = 18.62). Participants provided a wide range of cognitive 

measures and questionnaire data, summarized below.  

2.3.2 Cognitive variables  

Thirteen cognitive tasks were used to assess five broad cognitive domains, which are 

described in Table 2-1. The cognitive domains assessed were executive functions, 

memory, language functions, motor and action function and emotional processing. 
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Table 2-1: description of cognitive behavioural tasks 

Cognitive 
Domain  

Cognitive Task   Task Description   Descriptive 
Statistics 
(Mean, SD, 
Range, 
Missingness)  

References 

Executive 
Function   

Fluid Intelligence Cattell Culture Fair 
Test, incl. nonverbal 
puzzles involving 
series completion, 
classification, 
matrices, and 
conditions. 

M=31.8 

SD=6.76 

Range=11-44 

Missing=6.8% 

R.B. Cattell 
& Cattell, 
1960 

Multitasking 
(Hotel Task)  

Perform tasks in role 
of hotel manager: 
write customer bills, 
sort money, 
proofread advert, 
sort playing cards, 
alphabetise list of 
names. Total time 
must be allocated 
equally between 
tasks; there is not 
enough time to 
complete any one 
task. 

M=3.07 

SD=1.74 

Range=0.2-9.6 

Missing=7.1% 

Shallice & 
Burgess, 
1991 

Language 
Functions    

Spot the Word Involves presenting 
an individual with 
pairs of items 
comprising one word 
and one non-word, 
for example, ‘flonty – 
xylophone’, the 
individual is 
required to point to 
the real word in the 
pair. 

M=53.58 

SD=5.39 

Range=24-60 

Missing=0.42% 

Baddeley, 
Emslie & 
Nimmo-
Smith, 1993 

Sentence 
Comprehension  

Listen to and judge 
grammatical 
acceptability of 
partial sentences, 
beginning with an 
(ambiguous, 
unambiguous) 

M=0.89 

SD=0.07 

Range=0.46-1 

Missing=11.4% 

Rodd, 
Longe, 
Randall, & 
Tyler, 2010 
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sentence stem (e.g., 
“Tom noticed that 
landing planes…”) 
followed by a 
disambiguating 
continuation word 
(e.g., “are”) in a 
different voice. 
Ambiguity is either 
semantic or 
syntactic, with 
empirically 
determined 
dominant and 
subordinate 
interpretations 

Picture-Picture 
Priming  

Name the pictured 
object presented 
alone (baseline), 
then when preceded 
by a prime object 
that is 
phonologically 
related (one, two 
initial phonemes), 
semantically related 
(low, high 
relatedness), or 
unrelated 

M=0.78 

SD=0.09 

Range=0.5-0.94 

Missing=8.3% 

 

 

Clarke, 
Taylor, 
Devereux, 
Randall, & 
Tyler, 2013 

Verbal Fluency  Mean of Letter 
(phonemic) fluency 
and animal 
(semantic) fluency 
task. For phonemic 
fluency task, 
participants have 1 
min to generate as 
many words as 
possible beginning 
with the letter ‘p’. 
For semantic fluency 
task, participants 
have 1 min to 
generate as many 
words as possible in 
the category 
‘animals’.  

M=20.56, 
SD=5.34 

Range=6-37.5 

Missing=0.28% 

Lezak, 
Muriel, & 
Deutsch, 
1995 
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Proverb 
Comprehension  

Read and interpret 
three English 
proverbs. 

M=4.53 

SD=1.63 

Range=0-6 

Missing=7.5% 

Hodges, 
1994 

Emotional 
Processing   

Face Recognition Given a target image 
of a face, identify 
same individual in 
an array of 6 face 
images (with 
possible changes in 
head orientation and 
lighting between 
target and same face 
in the test array) 

M=22.88 

SD=2.36 

Range=14-27 

Missing=7.2% 

Benton, 
1994 

Emotion 
Expression 
Recognition 

View face and label 
emotion expressed 
(happy, sad, anger, 
fear, disgust, 
surprise) where faces 
are morphs along 
axes between 
emotional 
expressions. 

M=8.66 

SD=1.09 

Range=3.33-10 

Missing=7.1% 

 

 (Ekman & 
Friesen, 
1976) 

Memory  Visual Short-
Term Memory 

View (1–4) coloured 
discs briefly 
presented on a 
computer screen, 
then after a delay, 
attempt to 
remember the colour 
of the disc that was 
at a cued location.  

M=2.43 

SD=0.59 

Range=0-3.5 

Missing=7.3% 

(W. Zhang 
& Luck, 
2008) 

Story Recall  Listen to a short 
story, recall freely 
immediately after, 
then again after a 
delay, and finally 
answer recognition 
memory questions. 
Delayed recall 
measure used here.  

M=12.88 

SD=4.31 

Range=0-24 

Missing=0.14% 

(Wechsler, 
1999)  

Motor and 
Action 
Function  

Choice Motor 
Speed 

Time-pressured 
movement of a 
cursor to a target by 

M=0.19 

SD=0.06 

Range=0.05-0.85 
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2.3.3 Lifestyle variables  

I included a broad set of 23 lifestyle measures from the Cam-CAN dataset, which were 

collected via a series of different questionnaires, summarized in Table 2. Eight lifestyle 

variables were obtained during the Home Interview, an extensive face-to-face interview 

conducted at Stage 1 of Cam-CAN data collection. The remaining variables were 

obtained during the main data collection period for the Cam-CAN cohort (Stage 2). 

Measures of physical activity, depression and sleep were assessed via the physical 

activity energy expenditure (PAEE) questionnaire, the Hospital Anxiety and Depression 

Scale (HADS; Zigmond & Snaith, 1983) and the Pittsburgh Sleep Quality Index (PSQI; 

(Buysse et al., 1989), respectively. The remaining 12 lifestyle variables were taken from 

the Lifetime of Experiences Questionnaire (LEQ; Valenzuela & Sachdev, 2007), which 

measures a broad range of cognitively stimulating experiences and activities during 

three life phases: youth, 13-29 years; mid-life, 30-64 years; and late-life, 65 years 

onwards. Within each phase, further details about activities “specific” to that time of life 

(e.g., education in youth) were solicited, as well as “non-specific” activities applicable to 

any phase (e.g., socialising). The LEQ therefore provides information about current life 

experiences for all participants, as well as retrospective information about previous life 

experience for participants in their mid- and late-life phases. Usually, this information 

is reflected in one specific and one non-specific sum score for each stage of life. In this 

moving an 
(occluded) stylus 
under veridical, 
perturbed (30°), and 
reset (veridical 
again) mappings 
between visual and 
real space. 

Missing=7.34% 

Choice Motor 
Coefficient of 
Variation 

Standard deviation 
divided by mean of 
reaction time of 
choice motor speed. 
Reflects the relative 
measure of 
variability.  

M=1.84 

SD=0.38 

Range=0.86-2.98 

Missing=7.34% 
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study, however, I focused on a more fine-grained scoring procedure. First, I defined the 

measure of education as the young-age specific score, derived from the UK’s National 

Career Service categories and multiplied by number of years at each category. Second, I 

included only current non-specific activities depending on the age of the individual, as 

I wanted to focus on contemporaneous activities, and allow consistent data across the 

full age range. Third, as the core goal of this study was to assess multiple lifestyle aspects 

and their relationships to cognition, I obtained separate scores for the seven non-

specific questions, rather than calculating the usual sum-score. As these seven questions 

(see Table 2-2) cover a range of lifestyle activities, individual scores allowed me to more 

precisely determine their covariances to other lifestyle factors. Non-specific activities 

were assessed through the same seven questions during youth, mid-life and late-life, 

addressing participation in i) travel, ii) social outings, iii) playing a musical instrument, 

iv) artistic pastimes, v) physical activity (mild, moderate, vigorous), vi) reading, vii) 

learning or speaking a second language. In addition, participants were asked whether 

their typical day included any of the following activities: i) internet use, ii) strategic 

games (e.g., chess, bridge, cards), iii) prayer/religious activity, iv) brain training games. 

All non-specific scores were scaled to a score from 0-5.   

Table 2-2: Description of lifestyle variables.  

Lifestyle 
Factor  

Variable  Description/Question Descriptive 
Statistics  

Referenc
e 

Education 

/SES  

Income  What is the average total 
income before tax 
received by your 
household? (1-5) 

M=2.83 

SD=1.49 

Range=1-5 

Missing=0.14% 

HI 

Smoking 
habits  

category of smoking 
based on self-report 
questions (1-3) 

M=1.03 

SD=0.97 

Range=0-3 

Missing=1.4% 

HI 

TV 
watching**  

How much TV do you 
watch per week?  

M=2.2 

SD=1.47 

Range=0-7 

HI 
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Missing=61.9% 

Body Mass 
Index (BMI) 

Weight (kg) / Height2 
(m2) 

M=25.78 

SD=4.59 

Range=16.75-48.32 

Missing=17.2% 

HI 

Travel Did you travel to any of 
the following continents 
between the ages of 13–30 
years? 

(9 options available)  

M=2.3 

SD=1.25 

Range=0-5 

Missing=12.01% 

LEQ 

Instrument  How often are you 
practising or playing a 
musical instrument? 

M=1.97 

SD=1.22 

Range=0-5 

Missing=12.01% 

LEQ  

Language  How often do you 
practise speaking, 
reading, writing or 
learning a second 
language? 

M=1.89 

SD=1.26 

Range=0-5 

Missing=12.01% 

LEQ  

Years of 
education  

Sum score derived from 
the UK’s National Career 
Service categories, 
multiplied by number of 
years at each category 

M=3 

SD=2.49 

Range=0-13.29 

Missing=12.3% 

LEQ   

Physical 
Health  

Internet  Does your typical day 
include internet use?  

M=3.39 

SD=1.89 

Range=0-5 

Missing=12.01% 

LEQ 

Exercise+   Please give the typical 
number of hours per 
week you spend in sports 
and physical activities. 
Divided into mild, 
moderate and vigorous 
activities.  

M=3.43 

SD=1.02 

Range=0-5 

Missing=12.01% 

LEQ 

Systolic 
Blood 
Pressure  

Mean systolic blood 
pressure of three samples  

M=120.08 

SD=17 

Range=78.5-186 

Missing=18.1% 

HI 
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Physical 
activity 

Total physical activity 
energy expenditure  
(PAEE) calculated from 
self-report ACTMETS 
(kJ/day/kg) 

M=4.29 

SD=2.19 

Range=0-17.71 

Missing=11.9% 

HI 

Mental 
Health  

Depression  Hospital Anxiety and 
Depression Scale (HADS) 

M=2.82 

SD=2.58 

Range=0-17 

Missing=0.56% 

(Zigmond 
& Snaith, 
1983) 

Quality of 
sleep  

Pittsburgh Sleep Quality 
Index (PSQI) 

M=5.41 

SD=3.68 

Range=0-22 

Missing=5.4% 

(Buysse et 
al., 1989) 

Alcohol 
consumptio
n  

Amount of alcohol used 
weekly 

M=3.29 

SD=1.37 

Range=0-5 

Missing=3.9% 

HI 

Self-Health  Self-reported health. 4-
point scale; 1= excellent 
4=poor 

M=1.87 

SD=0.69 

Range=1-4 

Missing=0.28% 

HI 

Social 
Engagement  

Exercise+   Please give the typical 
number of hours per 
week you spend in sports 
and physical activities. 
Divided into mild, 
moderate and vigorous 
activities.  

M=3.43 

SD=1.02 

Range=0-5 

Missing=12.01% 

LEQ 

Social 
outings 

How often might you 
make an outing to see a 
family member, friend or 
group of friends?  

M=3.66 

SD=1.08 

Range=0-5 

Missing=12.01% 

LEQ 

Religious 
Activities  

Does your typical day 
include prayer / religious 
activities? 

M=2.2 

SD=1.33 

Range=0-5 

Missing=12.01% 

LEQ 
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Social Mean 
Score 

Derived from 13 question 
sub-section of Home 
interview 

M=2.32 

SD=0.6 

Range=0-4.18 

Missing=0% 

HI 

Intellectual 
Engagement  

Reading  Does your typical day 
include reading? 

M=4.68 

SD=0.92 

Range=0-5 

Missing=12.01% 

LEQ  

Brain 
Training 
Games   

Does your typical day 
include brain training 
games (e.g., Computer or 
Nintendo)? 

M=1.7 

SD=1.2 

Range=0-5 

Missing=67.8% 

LEQ* 

Strategic 
Games  

Does your typical day 
include strategic games 
(e.g., Chess, Bridge, 
Cards)? 

M=1.55 

SD=0.98 

Range=0-5 

Missing=12.01% 

LEQ  

Artistic 
Pastime  

How often do you practise 
or develop an artistic 
pastime (e.g., drawing, 
painting, sculpture, 
creative writing, acting, 
etc.)? 

M=2.09 

SD=1.48 

Range=0-5 

Missing=12.01% 

LEQ  

The grouping into ‘lifestyle factors’ is the result of the factor analysis outlined in more detail below.  

HI = Home Interview. LEQ = Lifetime of Experiences Questionnaire. * Only older participants were 
asked this question (N=228) ** This question was completed in a take-home questionnaire by a subset 
of the sample (N=270) + The LEQ exercise question cross-loaded onto Social Engagement and Physical 
Health in the CFA model and is thus included twice in this table  
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2.3.4 Exploratory Structural Equation Modelling  

In order to obtain a data-driven categorization of the cognitive and lifestyle variables, I 

used a relatively novel technique called exploratory structural equation modelling 

(ESEM; Asparouhov & Muthén, 2009). ESEM integrates confirmatory factor analysis 

(CFA) and structural equation modelling (SEM) to provide confirmatory tests of a priori 

factor structures.   

Based on theory, CFA measurement models specify a number of factor loadings fixed at 

zero to reflect a hypothesis that only certain factors influence certain factor indicators. 

The CFA approach of fixing many or all cross-loadings at zero may force a researcher to 

specify a more parsimonious model than is suitable for the data. Because of this, models 

often do not fit the data well and there is a tendency to rely on extensive model 

modification to find a well-fitting model (Tóth-Király et al., 2017). A commonly used 

alternative to CFA is Exploratory Factor Analysis (EFA), which solves some of CFA’s 

challenges in situations of limited measurement knowledge of the researcher and / or a 

more complex measurement structure. However, EFA can be difficult to perform while 

allowing correlated residuals, and it assumes that all measured variables are related to 

every latent variable. For these reasons, researchers often opt for an ad-hoc procedure 

that mimics the EFA factor definitions in a SEM model with a CFA measurement 

specification (that is, they run an EFA first, followed by a CFA). This EFA-to-CFA 

conversion has been shown to be challenging, and can lead to mis-specified models 

(Marsh et al., 2014). The main advantage of the ESEM model over other modelling 

practices is that ESEM incorporates seamlessly the EFA and SEM models. ESEM 

integrates EFA into SEM (which otherwise relies on CFA measurement models) by 

estimating the measurement and structural model parts simultaneously. I used the 

package psych (version 1.7.8; 41) in R-Studio 1.0.153 (R version 3.4.2). 

 

 



66 Greater lifestyle engagement is associated with better age-adjusted cognitive abilities 

 

2.3.5 Age-residualized cognitive abilities  

After computing the best age-related trajectories, I calculated indices of age-adjusted 

cognitive abilities in each domain. For this, I separately regressed fluid and crystallized 

factor scores on age, retaining the residual score for each participant and factor. As 

depicted in Figure 2-1, each residual score thus reflects the difference between the 

participants’ observed and her age-predicted factor scores.  

 

Figure 2-1: Depiction of residuals. By regressing cognitive abilities on (a second-order polynomial 
expansion of) age, one retains a residual score for each participant. This residual score reflects the 
difference between the participants’ observed and her age-predicted scores. Here, pink dots refer to 
scores below the age-expected mean, green dots represent scores above the age-expected mean. This 
allows for an older person with a (compared to the full sample) relatively low score to be considered 
cognitively healthy (e.g., yellow circle). Likewise, a younger person with a high absolute score (blue 
circle) can be considered as being cognitively below his age-related peers. 

Because the residuals were obtained from a curve reflecting age-related differences, they 

do not represent the difference between a participant’s score and the overall mean, but 

rather of the mean expected for the participant’s age (thus, the age-adjusted mean). 

Although these scores will still correlate with raw scores within each domain, these 



Methods  67 

 

residuals adjust for age-expected declines, allowing, for example, an 80-year-old person 

with a relatively low absolute score to be considered cognitively healthier than a 

younger individual with a higher score. Residualized fluid and crystallized cognition 

therefore serve as my measure of age-adjusted cognitive abilities in further analyses. 

Similar measures have been proposed to quantify brain structure adjusted for calendar 

age (Cole & Franke, 2017), and psychosocial functioning adjusted for the severity of 

adverse childhood experiences (van Harmelen et al., 2017). I tested for the assumption 

of homoscedastic residuals using the Breusch-Pagan test to check if the variability of 

the residuals increased across the lifespan. Where appropriate I also computed robust 

regressions to ensure heteroscedasticity did not affect my inferences. 

 

2.3.6 Confirmatory Factor Analysis (CFA)  

In the second step of my analyses, I used a set of simpler confirmatory factor analyses 

(CFA models) to a) achieve stable model estimation and b) facilitate detailed model 

comparisons. CFA is a multivariate statistical procedure that allows the researcher to 

specify the number of latent and observed constructs in order to test how well the 

former are captured by the latter. Translating my ESEM solutions to CFA models 

allowed me to formally test more parsimonious models that remove negligible cross-

loadings, and to assess overall model fit using a more conventional range of model fit 

indices. Although such a two-step procedure is ideally performed on two independent 

subsamples of the data, this was not feasible given the necessity to balance between 

model complexity and sample size. While one-step, or factor score regression 

approaches (Devlieger & Rosseel, 2017), are generally considered preferable, challenges 

with convergence and model estimation precluded such approaches here. As such, I 

specified CFA’s separately for each domain and used estimated factor scores in the 

second stage. All models were fit using Lavaan 0.6-1.1203 version (Rosseel, 2014). Prior 

to model fitting, one variable with very large variance (multitasking, measured in 

milliseconds) was rescaled by dividing by 100 to avoid convergence problems. All 
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models were fit using maximum likelihood estimation with robust (Huber-White) 

standard errors and a scaled chi square test statistic. Missing data, reported in Tables 1 

and 2, were accounted for using Full Information Maximum Likelihood method in 

Lavaan, which allowed me to estimate factor scores for all individuals, including those 

with partially missing data and yields unbiased estimates under the assumption of 

missing at random or missing completely at random (Enders & Bandalos, 2001). 

Assuming data are either Missing Completely At Random (MCAR) or Missing At 

Random (MAR), i.e. the missing data can only be dependent on variables also measured 

within the same dataset, Full Information Maximum Likelihood (FIML) can be used to 

estimate a model on the full dataset (including subjects with incomplete data; Enders, 

2001; Enders & Bandalos, 2001; Wothke, 2000). Given the considerable richness and 

diversity of data included here, I consider this a defensible assumption, and one made 

in many other papers. Tests exist for whether data is missing completely at random (e.g., 

Little’s test), and although that assumption is not required for the implementation of 

FIML, I ran the test (using R’s mcar_test function) to verify that my data were missing 

completely at random (Chi Square = 57.43; p =0.91). Using FIML for missing data (under 

multivariate normality) maximizes the utility of all existing data, decreases bias and 

increases statistical power compared to (for instance) omitting incomplete cases 

(‘complete case analysis’; Baraldi & Enders, 2010). In direct comparisons, FIML usually 

performs as well or better than alternative methods such as multiple imputation (MI) 

(Larsen, 2011; von Hippel, 2016) and considerably better than complete case analysis. A 

practical benefit of FIML compared to MI is the stability of estimation across uses, 

whereas multiple imputation depends on stochastic sampling and will yield a (slightly) 

different estimate every time. 

Model fit was inspected using the chi-square test, the Root Mean Square Error of 

Approximation (RMSEA) and its confidence interval, the Comparative Fit Index (CFI) 

and the Standardized Root Mean Square Residual (SRMR). Good fit was defined as 

RMSEA < 0.05, CFI > 0.97 and SRMR < 0.05, acceptable fit as approximately RMSEA = 

0.08 – 0.05, CFI = 0. 95 – 0.97, SRMR = 0.05 – 0.1 (Schermelleh-Engel et al., 2003).  
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In order assess the slope shape crystallized and fluid intelligence cross the lifespan, I 

extracted factor scores from the cognitive models for all participants. I tested whether 

the lifespan differences of crystallized and fluid intelligence were best captured by 

linear, quadratic, or cubic curves by comparing the BICs of each of the models.  

Finally, I examined the degree to which lifestyle factors made specific contributions to 

fluid versus crystallized cognitive differences. To do so, I refit the models while 

imposing equality constraints on the lifestyle paths. In other words, I compared a model 

where the effects of lifestyle factors are estimated individually for each of the two 

cognitive domains, to a more parsimonious model where the path coefficients are 

assumed to be identical for fluid and crystallized healthy ageing. If the effects of lifestyle 

factors are equal for both cognitive domains, then one would expect an equality 

constrained model (where the effects of lifestyle factors on cognitive domains are 

presumed to be equal) to fit better. However, if certain lifestyle factors have stronger, 

or weaker, effects on each domain, then one would expect a model that estimates all 

structural paths freely to fit better. 

2.3.7 Exploratory Analyses  

I performed a series of exploratory analyses to assess the presence of i) an interaction 

effect of age and lifestyle using a median split and ii) sex effects. 

2.4 Results  

2.4.1 Exploratory structural equation model 

The sample-size adjusted BIC scores are shown in Figure 2-2 (the first number in each 

model name refers to the number of cognitive variables, and the second number refers 

to the number of lifestyle variables). The ESEM analyses revealed that, generally, two- 

and three factor models of cognitive abilities fit the data substantially better than a one 

factor model. The three factor solutions had marginally better fit than the two factor 
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solutions (e.g., ΔBIC = 13.55 for the 2_5 versus 3_5 model). However, I opted for a two 

factor solution for theoretical reasons, as the two factor solution closely resembled the 

canonical distinction between fluid and crystallized abilities, in line with Cattell 

(Cattell, 1943) and a large body of body of work on cognitive ageing (Baltes et al., 1999; 

Ghisletta et al., 2012). Moreover, I note that, in the two factor cognitive model, although 

the strongest factor loading on the first ‘fluid’ factor is the Cattell test, it includes a 

relatively large, and broad, number of cognitive abilities, several of which are beyond 

the traditional remit of pure fluid intelligence (Horn & Cattell, 1967). 

 

Figure 2-2: Exploratory structural equation model results. Y-axis reflects Bayesian Information Criterion 
(BIC) measure of model fit; X-axis labels consist of two digits separated by an underscore (e.g., 2_4), 
where the first refers to the number of cognitive latent variables, and the second to the number of 
lifestyle latent variables. Model 2_6 has the best overall fit, then Model 3_6; however, Model 2_5 was 
selected for further examination due difficulties interpreting the sixth lifestyle factor in the 2_6 and 3_6 
models. 
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2.4.2 CFA: Cognitive Model  

First, I fit the cognitive data with a two-factor model that mirrors the canonical 

distinction between crystallized and fluid abilities (Cattell, 1943). One notable 

exception was that this model required a single data-driven cross-loading for 

the sentence comprehension task, which may reflect the nature of the task as a 

combination of being knowledge-based (whether a sentence is grammatical) and 

benefiting from fluid ability. This cognitive measurement model, shown in Figure 2-3 

(A) fit the data adequately: χ2 = 233.87 (N = 708), df = 63, p <0.001, RMSEA = 0.057 [0.049 

0.066], CFI = 0.93, SRMR = 0.048, suggesting that the cognitive data were well captured 

by a two-factor model. 

 

Figure 2-3: Confirmatory factor model. A) Cognitive CFA. For multitasking and motor speed, lower 
scores indicate better performance (hence the negative factor loadings). B) Fluid factor scores for each 
participant. Fluid abilities decline with age. C) Crystallized factor scores for each participant; 
crystallized abilities show slight increase and then decrease. All parameters shown are fully 
standardized. 

Next, I extracted factor scores for all individuals to examine the most appropriate 

lifespan trajectory for each domain (linear or quadratic). As expected, fluid and 

crystallized factors showed different lifespan patterns. Scores on the fluid latent variable 

showed a strong age-related decline, with a modest acceleration of this decline in old 

age (Figure 2-3 B) consistent with the best-fitting model including a quadratic 

component (BIC Quadr = 1391.15, BIC Lin = 1458.09, BIC Cubic = 1393.17). Scores on the 
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crystallized latent variable were less strongly associated with age, with a slight increase 

until middle age but suggestion of decline in old age Figure 2-3 C), again consistent with 

a quadratic component (BIC Quadr = 1676.27, BIC Lin = 1696.91, BIC Cubic = 1678.06). 

2.4.3 Age-residualized cognitive abilities 

Age-residualized measures of fluid and crystallized abilities (shown in Figure 2-4) were 

significantly positively correlated (Pearson’s r = 0.59 [0.53 0.63], df = 706, p = < 0.001). 

The median (age 55) split analysis showed that the Gf-Gc correlation of residuals did 

not differ significantly for the two age groups (z = 0.8, p = 0.42). 

Figure 2-4: Age adjusted residuals. Residuals as measure of healthy cognitive ageing. A) Crystallized 
residuals, B) fluid residuals, C) correlation between crystallized and fluid residuals; r(706) = .59, p < .001. 

 

2.4.4 CFA: Lifestyle Model  

Next, I examined the lifestyle domains in more detail. To do so, I used the ESEM results 

to specify a simpler (fewer cross-loadings) CFA that captured the observed variables 

across five latent factors (Figure 2-5). Based on the pattern of loadings, I refer to these 

five latent variables as follows: i) Education/Socio-Economic Status (SES), ii) Physical 

Health, iii) Mental Health, iv) Social Engagement, v) Intellectual Engagement. 

Education/SES consisted of eight variables, namely years of education, income, 

language, travel, smoking, TV watching and instrument playing. Physical Health 
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consisted of systolic blood pressure, internet usage, the PAEE score and the LEQ 

exercise score. Mental health was captured by alcohol usage, depression, self-reported 

health, and sleep quality. The factor loadings of Intellectual Engagement were reading, 

brain training games, strategic games, Sudoku/Crossword, and the degree of 

engagement in artistic pastime. Lastly, Social Engagement was characterized by 

religious activity, social outing, the social activity score from the Home Interview and 

the LEQ physical exercise score. Note, the labels of the factors are for convenience and 

based on the strongest loadings–some include factor loadings on variables which are 

not canonically associated with the construct. Consider, for instance, alcohol for Mental 

Health or smoking for Education/SES – both are plausibly part of the respective factors 

but may not have been placed there using a more researcher- (rather than data-) driven 

categorization method. As was the case for the cognitive CFA, this lifestyle model 

required one data-driven cross-loading for the LEQ exercise variable, which may reflect 

that fact that many physical activities (e.g., basketball, hiking) include significant social 

aspects. The model showed adequate fit to the data in most respects: χ2(241) = 747.69 

(N = 708), p <0.001, RMSEA = 0.055 [0.050 0.059], CFI = 0.720, SRMR = 0.060, although 

the CFI is lower than preferable, likely due to the modest factor loadings of some 

variables. Given the nature of the observed scores (see Table 2), higher scores in Social 

and Intellectual Engagement and SES/Education reflect more engagement 

and increased socioeconomic status, respectively. In contrast, higher scores in the 

Physical Health and Mental Health factors, however, reflect poorer health as their 

indicators (e.g., blood pressure, mental health symptoms) are considered poor 

outcomes. 
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Figure 2-5: Lifestyle CFA. Following the factor loadings obtained via the ESEM, 24 broad lifestyle 
variables loaded onto five latent lifestyle variables: mental health, social engagement, intellectual 
engagement, education/SES and physical health. All parameters shown are fully standardized. All but 
three lifestyle factor loadings (income, internet usage and alcohol) were in the expected direction. 

Note that all but three factor loadings were in the expected direction. First, income 

loaded negatively onto education/SES, where usually higher income is associated with 

higher SES. One explanation for this could be that Cam-CAN represents a wealthier and 

more educated sample than the general population, and that in the absence of the “full” 

range, the effects of income diminish. In addition, although significant, this factor 

loading of -0.14 was small, and should be interpreted with caution. Second, lower 

alcohol consumption was associated with poorer mental health, where some might have 

hypothesized the opposite. However, as was the case for income, the factor loading was 

small (-0.12), and interpretability is therefore limited. Third, more internet usage was 

associated with better physical health. I believe that this is largely an SES effect, such 

that people with higher SES (who, on average, have better physical health) also spend 

more time browsing the internet. 

2.4.5 Separate Regressions  

Next, I investigated the extent to which the five lifestyle factors determined my 

measures of healthy ageing. As the simultaneous estimation of the measurement models 

(across cognitive and lifestyle domains) and the structural model (regressing cognitive 

domains on lifestyle variables) could not achieve robust convergence, I used a two-step 



Results  75 

 

procedure. First, I extracted the factor scores for both cognitive factors and computed 

age-adjusted residuals. Second, I regressed measures of age-residualized fluid and 

crystallized abilities on the lifestyle factor scores. Doing so, I observed significant 

associations between each individual lifestyle factor and both fluid and crystallized 

ageing, as depicted in Figure 2-6. The strongest associations were those 

between Education/SES and fluid (std β = 0.26) and crystallized cognition (std β = 0.33), 

followed by Intellectual Engagement (fluid std β = 0.24, crystallized std β = 

0.22), Mental Health (fluid std β = -0.17, crystallized std β = -0.19), Physical Health (fluid 

std β = -0.17, crystallized std β = -0.14) and finally Social Engagement (fluid std β = 0.15, 

crystallized std β = 0.10).  

Figure 2-6: Individual path models. Separate regression results for A) fluid abilities and B) crystallized 
abilities. All five lifestyle factors were significantly associated with cognitive health across the lifespan. 

Following recent effect size guidelines (Gignac & Szodorai, 2016), I interpret the 

associations between the lifestyle factors and cognition to range from relatively large 

(Education/SES) to typical (Intellectual Engagement, Mental Health, Physical Health), 

with small associations found for Social Engagement. In summary, these findings 
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suggest that having higher levels of education/SES as well as physical and mental health, 

and partaking in intellectually and socially engaging activities, are all individually 

associated with better fluid and crystallized cognitive outcomes throughout the 

lifespan, above and beyond age. 

All regressions showed modest deviations of the assumption of homoscedastic residuals 

(all Breusch–Pagan tests χ2>10, df = 1, p<0.01), with a general increase in variability across 

the lifespan (Figure 2-7). To ensure that these heteroscedastic residuals did not affect 

my inferences concerning lifestyle-cognition associations, I re-estimated all models 

using a heteroscedasticity-consistent robust sandwich estimator (using the package 

‘sandwich’; Zeileis, 2004)). As can be seen in Table 2-3, the parameter estimates and 

standard errors are virtually identical, suggesting negligible consequences of the 

heteroscedastic residuals. 

Cognitive 
domain 

Lifestyle factor  Standardiz
ed beta  

Standard 
error  

p R2 Robust 
sandwich 
beta  

Robust 
sandwich 
SE 

p 

Fluid 
abilities  

Mental Health -0.16 0.03 <0.001 0.04 -0.16 0.04 <0.001 

Social  0.15 0.03 <0.001 0.03 0.15 0.03 <0.001 

Intellectual  0.24 0.03 <0.001 0.08 0.24 0.04 <0.001 

Education/SES 0.26 0.03 <0.001 0.11 0.26 0.03 <0.001 

Physical Health  -0.17 0.03 <0.001 0.05 -0.17 0.03 <0.001 

Crystalliz
ed 
abilities  

Mental Health -0.18 0.04 <0.001 0.04 -0.17 0.04 <0.001 

Social  0.10 0.03 <0.001 0.009 0.79 0.04 <0.001 

Intellectual  0.22 0.04 <0.001 0.05 0.22 0.04 <0.001 

Education/SES 0.33 0.04 <0.001 0.11 0.33 0.04 <0.001 

Physical Health  -0.19 0.04 <0.001 0.04 -0.19 0.04 <0.001 
Table 2-3: Separate regression results for fluid and crystallized abilities.   
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Figure 2-7: Test for homoscedasticity. Figure shows modest deviations of homoscedasticity across the 
lifespan. 

 

2.4.6 Multiple Regressions 

Next, I examined the joint effects of lifestyle factors on healthy cognitive ageing, by 

simultaneously regressing scores of age-adjusted fluid and crystallized abilities on all 

five lifestyle factors (Figure 2-8). Doing so allowed me to examine the degree to which 

each of the five lifestyle factors make unique contributions to cognitive health. For fluid 

abilities, Education/SES (std β = 0.30, SE = 0.06, p < 0.001), Social Engagement (std β = 

-0.12, SE = 0.048, p = 0.012), Intellectual Engagement (std β = 0.26, SE = 0.06, p < 0.001) 

and Physical Health (std β = 0.20, SE = 0.06, p = 0.001), were significant predictors, 

predicting unique variance in fluid age-residualized abilities, and together explaining 

14% of the variance. I found a similar pattern for crystallized abilities, with 

Education/SES (std β = 0.56, SE = 0.075, p < 0.001), Social Engagement (std β = -0.22, SE 

= 0.059, p < 0.001), Intellectual Engagement (std β = 0.22, SE = 0.069, p < 0.001) and 

Physical Health (std β = 0.30, SE = 0.07, p < 0.001) each significant and together 

explaining 16% of the variance. I did not find evidence that mental health made unique 

contributions to fluid or crystallized abilities beyond the other lifestyle factors. Notably, 

in these joint models, the directionality of the effect of Social Engagement changed from 



78 Greater lifestyle engagement is associated with better age-adjusted cognitive abilities 

 

positive to negative, while Physical Health changed from negative to positive. These 

sign inversions may reflect a true conditional association, or rather a quantitative 

consequence of the dataset and procedure employed here–I discuss these matters in 

more detail below. 

 

Figure 2-8: Results of multiple regressions. Four out of five lifestyle factors made unique contributions. 

Regarding the specificity of the contribution of lifestyle to crystallized versus fluid 

abilities, I found that the freely estimated model fit marginally better (Δχ2 (5) = 13.92, p = 

.016; AIC & BIC (free) = 3580.0; 3639.3; AIC & BIC (constrained) = 3583.9; 3620.4)), 

suggesting small differences in path estimates. Closer inspection of the parameter 

estimates showed that this difference was driven almost exclusively by SES, which has 

a stronger association with crystallized abilities (standardized beta: .56) than with fluid 

(.30). 

2.4.7 Exploratory Analyses  

My final set of analyses investigated whether the relationship between lifestyle and 

cognition differed for different ages or sexes: Testing for an interaction effect therefore 

assessed whether any of the lifestyle factors increase or decrease in importance for 
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cognitive health across the lifespan, or between the sexes. To do so, I performed a multi-

group model based on a median age split (median = 55 years), which showed that 

imposing equality constraints across age group did not adversely affect the estimation 

of the association between lifestyle and cognitive outcomes (Δχ2 (5) = 3.799, p = .58). In 

other words, a model that assumed the association between lifestyle and cognitive 

outcomes was the same for those younger and older than 55 did not perform 

meaningfully worse than a model which assumed them to be different. Finally, I then 

tested for the presence of sex effects, which again found that the joint model could be 

equally constrained across sexes without a notable drop in model fit, Δχ2 (10) = 12.96, p 

= .23. This suggests that the associations between lifestyle and cognitive health are 

similar across age and for both sexes. 

2.5 Discussion  

2.5.1 Summary of main findings  

In a large lifespan cohort with a broad set of measures, I examined the associations 

between healthy cognitive ageing and potentially modifiable lifestyle factors. I observed 

that, in isolation, better physical and mental health, increased social and intellectual 

engagement and higher levels of education/SES were significantly associated with age-

residualized crystallized and fluid cognition (i.e., cognitive abilities higher than those 

expected for one’s age). 

Three out of five lifestyle factors showed typical effect sizes, with Education/SES having 

a strong association, and Social Engagement having a small association (Gignac & 

Szodorai, 2016). Individual lifestyle domains have previously been correlated with 

cognitive health in old age and my bivariate results provide further evidence for this 

relationship. However, as described in the introduction, few studies have investigated 

combinations of lifestyle factors in a way that allows for statistical inferences regarding 

their complementary effects (e.g., Clare et al., 2017 who used five separate linear 



80 Greater lifestyle engagement is associated with better age-adjusted cognitive abilities 

 

regressions to investigate the associations between cognition and cognitive and social 

activity, physical activity, diet, alcohol consumption and smoking). Here, when all 

lifestyle factors were incorporated into the same model, social and intellectual 

engagement as well as physical health made independent contributions to fluid and 

crystallized age-adjusted abilities, above and beyond the effect of education/SES. These 

relationships were robust across age and sex, and highly similar for fluid and crystallized 

domains, suggesting general effects, rather than effects specific to cognitive domain. 

Importantly, social, physical, and intellectual activities are potentially modifiable. 

Assuming they are causally related to cognitive health (please refer to Chapter 4 for a 

more detailed discussion on potential causal mechanisms), interventions to increase 

them may help boost the cognitive abilities which, in turn, may support independent 

functioning in old age. 

In both the linear regressions and the joint models, the strongest associations were 

those between education/SES and cognitive health. This ties in well with the literature: 

for example, a recent systematic review comprising over 130,000 individuals (Kralj et al., 

2018) showed that a positive education/SES and healthy ageing was reported in 20 of 

the 25 included studies. One possible explanation is the notion of cognitive reserve (see 

Chapter 1 for a more detailed explanation of this concept), which suggests that 

education and occupational attainment determine the brain’s reserve capabilities 

(Stern, 2002). Arguably, however, a person’s education or socio-economic status are 

difficult to alter, particularly later in life. My finding that physical health and intellectual 

and social engagement are associated with cognitive health above and beyond 

education/SES therefore offers further support for the promise that potentially 

modifiable activities also contribute to cognitive reserve. 

Previous studies have also reported beneficial associations between higher level of social 

contact and healthy ageing (Gow et al., 2012; Lövdén et al., 2005; Pruchno & Wilson-

Genderson, 2015; Small et al., 2012a; Zaslavsky et al., 2014), consistent with the 

association found here. Although here the best solution is found by positing separate 

factors for social and intellectual engagement, note they are highly correlated (r = .78), 
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suggesting a large degree of overlap between the social and intellectual components of 

lifestyles. Recent work finds a similar overlap: Köhncke and colleagues (2016), for 

example, used the construct of ‘leisure activities’, which comprised both social and 

intellectual activities, to examine its impact on longitudinal change in brain structure 

and cognitive decline in a large, healthy Swedish cohort (Köhncke et al., 2016) . Notably, 

they observed that greater current leisure activities were associated with slower rates of 

decline in mental processing speed, and that this effect could be fully explained 

(mediated) by slower decline of white matter microstructure. Thus, although my study 

was cross-sectional, it fits in well with an increased focus on the benefits of an active 

socio-intellectual lifestyle in old age. Similarly, recent longitudinal evidence suggests 

possible reciprocal effects between subjective (self-assessment) and objective (test 

performance) measures of memory in old age (Snitz et al., 2015). In other words, 

individuals who think their memory is poor may avoid (social) situations where their 

memory is challenged, thus accelerating memory decline. It may be that social 

engagement functions as a method of frequent low-grade cognitive challenge, which 

helps support cognitive performance in old age.  

One key contribution of this chapter, echoing recent calls (Kremen et al., 2019), is 

the simultaneous inclusion of multiple lifestyle factors, in order to better understand 

their relations and independent contributions. Doing so, I show that four of the five 

lifestyle factors (all except mental health) contribute uniquely to explaining individual 

differences in cognitive outcomes. Interestingly, two of the path estimates, namely 

social and physical, changed sign: While they were, as expected, positively associated 

with outcomes in isolation, the sign of the association changed in the presence of other, 

collinear predictors. Both substantive and statistical explanations (which are not 

mutually exclusive) of these patterns are possible, and I outline both below. 

Firstly, I found that social activities became negatively associated with cognitive 

performance. A possible interpretation is that high levels of social activity which are 

devoid of intellectual activity may be associated with poorer outcomes. For example, 

social and intellectual activities may tend to co-occur in people (e.g., frequently meeting 
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with family to play games), but once the intellectual component is accounted for, the 

remaining types of social activity may actually be detrimental to cognitive ability (e.g., 

drinking alcohol regularly with friends). Further research using more refined lifestyle 

measures is needed to address this possibility. 

Secondly, in the simple regressions I observed that better physical health was associated 

with better cognitive outcomes–but this association changed in sign in the full model. 

The simple association is in line with several other papers, including intervention 

studies, which have suggested that physical activity reliably reduces the risk of cognitive 

impairment  (Colcombe & Kramer, 2003; Gill et al., 2015; Kramer et al., 2006; Middleton 

et al., 2010). However, not all studies observe the same pattern – the UK Whitehall II 

study found no evidence between physical activity and subsequent 27 year cognitive 

decline (Sabia et al., 2017), and Gow and colleagues found that mid-life intellectual and 

social activities, but not physical activity, were associated with late-life cognitive health 

(Gow et al., 2017). Notably, sign reversals need not be counterintuitive. For example, in 

the same Cam-CAN sample, Fuhrmann et al. observed strong associations such 

that low diastolic blood pressure (usually associated with lower overall blood pressure) 

was associated with worse neural health–but only when the model also included systolic 

blood pressure (Fuhrmann et al., 2019). This pathway thus captured the conditional 

effect of a large difference between systolic and diastolic blood pressure, known as ‘pulse 

pressure’ often associated with (precursors to) diabetes and other medical conditions 

(Schram et al., 2002). Similarly, there may be indirect conditional pathways which 

substantively explain the sign inversion. 

Alternatively, there are more purely quantitative explanations of these sign flips. It is 

well-known that high collinearity between predictors (here Intellectual Engagement 

and Social Engagement r = .61; Physical Health and Education/SES r =.-68) inflates the 

standard errors of the parameter estimates, which can produce changes in sign of the 

mean (Goldberger & Goldberger, 1991; Yoo et al., 2014). However, this increase in 

standard error would normally render tests no longer significant, which is not the case 

here (and the standard errors for these paths in the full model were not especially large). 



Discussion  83 

 

More likely is that my findings reflect a type of ‘reversal paradox’ (Tu et al., 2008). This 

phenomenon can occur when parts of a causal chain (i.e., both antecedents and 

consequences) are incorporated in the same model, inducing – especially in 

observational data with correlated predictors – reversals of path estimates depending 

on the nature of the predictors included. In this light, it is worth considering the ‘reverse 

causation’ hypothesis of Kremen and colleagues: They state that many of the protective 

effects of individual differences in lifestyle factors (such as greater cognitive and social 

engagements, and even education) are themselves the consequence of early life 

differences in cognitive ability (Kremen et al., 2019).  

In the absence of direct access to underlying causal mechanisms generating the data, I 

cannot conclusively say which of the above explanations are most plausible. As such 

converging lines of evidence from longitudinal studies, interventions and multivariate 

approaches will be required to understand the true aetiology of these effects. However, 

it unambiguously demonstrates the importance of simultaneous assessment of multiple 

lifestyle-cognition associations if one wishes to better understand the complex lifespan 

process of risk and resilience factors. 

The effect of mental health, while significant in univariate analyses, disappeared in the 

joint models. This null result should be interpreted with caution as NHST does not allow 

us to infer whether it reflects a “true null” (see Chapter 1). It suggests that the association 

between mental health (measured, in this paper, as an emergent latent construct that 

was measured by depression, quality of sleep, alcohol consumption and self-reported 

health) and cognitive health is either less strong compared to other lifestyle factors, or 

fully explained by co-occurrence with other lifestyle factors. This finding differs from 

those of other cross-sectional studies, which found associations between depression and 

poorer cognitive function in old age (Bunce et al., 2008; Elderkin-Thompson et al., 2007; 

Reppermund et al., 2011). However, this discrepancy can, in part, be explained by the 

high degrees of comorbidity between depression and dementia, given that the above 

studies (unlike the current one) included participants with mild cognitive impairment 

(MCI) and/or Alzheimer’s disease (AD). Indeed, a longitudinal study that employed 
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latent growth models showed that, when participants with MCI and AD were removed 

from the models, the association between cognitive health and depression disappeared 

(Bunce et al., 2012). 

I observed no significant difference of the lifestyle-cognition associations for crystallized 

compared to fluid age-adjusted abilities; both were captured best by models including 

education/SES, social engagement, and intellectual engagement. I interpret this to 

suggest that lifestyle is likely to benefit cognition in a global, rather than specific 

manner. This might have important ramifications for the interpretation of cognitive 

intervention studies, which often fail to find positive transfer effects. Assessing 

cognition on latent and global levels, rather than by performance on individual tasks 

might be – as has been suggested elsewhere (Schmiedek et al., 2010) – a more desirable 

statistical approach. 

2.5.2 Strengths and limitations  

A strength of my analyses is the inclusion of an unusually broad and rich set of lifestyle 

and cognitive variables in a large lifespan cohort. Uniquely, this allows me to directly 

compare the relative strength of associations of distinct lifestyle factors within the same 

healthy population. 

The most important limitation of this study is that the data investigated here are cross-

sectional. For this reason, although my findings align well with other work, I cannot 

make direct causal inferences regarding the observed associations, as they may be 

explained by a variety of causal pathways, included omitted third causes. Moreover, as 

noted above, causality may flow in both directions: better cognitive health may facilitate 

the desire, as well as capacity, to maintain an active life in old age (Gow et al., 2012). 

These issues can be addressed to some extent by longitudinal studies, and most directly 

by interventional studies; issues I discuss further in the subsequent two chapters. 

However, it may be all but impossible to engage in a true randomized intervention study 

of factors as integral to individuals as education, social and intellectual engagement. As 
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such, large observational studies relying on powerful multivariate methodology may 

offer an imperfect, but nonetheless valuable, insight into which lifestyle factors are most 

likely to have beneficial protective effects in ageing, and therefore provide candidate 

factors which might be more amenable to intervention studies (as well as advising what 

other factors should be controlled for in such studies). Moreover, I only examined 

relationships between current activities and current cognitive abilities: it is possible that 

many years are needed before lifestyle changes affect cognitive abilities. For example, 

one’s current lifestyle activities in old-age may be of little value if similar beneficial 

activities were not conducted earlier in life, consistent with previous Cam-CAN findings 

using retrospective questionnaires, where people’s activity scores in their current, old 

age did not make a unique contribution above the same activity scores reported from 

their previous, mid-life period (Chan et al., 2018). Further work is needed to more 

precisely reveal the temporal development of the beneficial effects of lifestyle 

engagement on cognitive abilities. 

Methodologically, my approach comes with strengths and limitations. The use of 

exploratory structural equation modelling (ESEM) allowed me to categorize the 

observed variables in a mainly data-driven fashion–an approach that has the potential 

to decrease researchers’ subjectivity and selection bias and improve statistical power. 

However, some loadings of the data-driven lifestyle factors may strike some as 

counterintuitive. Relatedly, by grouping lifestyle variables into factors, I decrease the 

specificity of associations of individual variables, and render the hypothetical 

translation to intervention targets (i.e., to encourage the increase of purportedly 

beneficial activities) less straightforward. This reflects a general issue, namely that the 

assessment of lifestyle-cognition associations warrants a trade-off between 

generalizability and reduction of measurement error (using latent variables) versus 

specificity and ease of interpretation (using observed variables). The latter approach has 

led researchers to conclude, for instance, that knitting, doing odd jobs and gardening 

all reduce the risk of dementia (Fabrigoule et al., 1995). However, a defence of latent 

lifestyle factors would posit that such activities are better seen as reflecting a class of 



86 Greater lifestyle engagement is associated with better age-adjusted cognitive abilities 

 

activities with similar purported beneficial effects. If there is causal efficacy to, say, 

knitting, then a coherent causal account would likely posit that activities with similar 

features (subjective enjoyment, social engagement) would lead to similar beneficial 

accounts. This line of reasoning is implicitly present in intervention studies that focus 

on e.g. ‘physical activity’, ‘cardiovascular training’ or ‘coordination training’ (rather than 

‘walking’ or ‘using a fitness ball’; e.g., Voelcker-Rehage et al., 2011). Additionally, even 

with individual variables, the notion of modifiability of lifestyle factors is not entirely 

straightforward, since the behaviours and personality characteristics that are amenable 

to intervention or modification, and the circumstances that enable alterations, have yet 

to be established. Factors like personality, mood, people’s perception of their abilities, 

as well as more external limitations including mobility and financial security, are all 

likely to affect the extent to which people alter the various aspects of their lives. Theory- 

or prediction-based approaches, such as mixture models or decision-tree based 

methods (Brandmaier et al., 2016), might provide useful tools to explore these open 

questions. 

Next, although several indicators of model fit are in the acceptable or good range, the 

CFI is lower than ideal. As the CFI is an index of comparative fit compared to the null 

model, a lower CFI often occurs for larger measurement models with moderate to low 

factor loadings. Although several of my factor loadings are strong (e.g., social outings 

on the social factor) others are lower (e.g., alcohol consumption on mental health). This 

is likely a consequence of reporting the best fitting exploratory model, which, in a large 

lifespan observational sample such as Cam-CAN, is likely to group together variables 

with only moderately strong relations to each other. In contrast, much more well-

established measurement models, refined over multiple cohorts, tend to lead to the 

selection of only indicators with (very) high loadings. As my goal here is explicitly a 

descriptive, exploratory factor analysis to reduce a rich sample of indicators to a 

tractable number of lifestyle factors, including only indicators with high factor loadings 

would not be appropriate, both for reasons of generalizability (modifying the factor 

structure purely for reasons of fit) and principle (I wish to convey the full richness of 
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the data including factor loadings and relationships that perhaps don’t fit pre-existing 

groupings). More importantly, the regressions (both the simultaneous and individual) 

show moderate to strong effects, suggesting that despite a subset of relatively weak 

loadings, the factor scores are separable and predictive of external outcomes. As such, I 

prefer the model as is, with several model fit indices that are good but with a less than 

optimal CFI, rather than modifying the model to simply achieve a better fit. This 

reasoning is also in line with my objective to use a data-, as opposed to researcher-driven 

categorization of variable: While an advantage to modifying the measurement model 

might be (slightly) better model fit, I believe that the advantages of the data-driven 

approach (i.e., increased objectivity and greater ease of replicability with other datasets 

and variables) outweigh these concerns. 

Finally, because Cam-CAN represents a sample of healthy adults from a specific region 

in the UK (City of Cambridge), the generalizability of my findings to other populations 

remains to be investigated by future research (see General Discussion in Chapter 5 for 

more detail). 

2.6 Conclusion  

In conclusion, this chapter’s findings suggest that lifestyle variables can be grouped into 

distinct but correlated factors. Moreover, these factors vary in the strength of their 

associations with cognitive health, and make specific, complementary contributions in 

explaining individual age-related differences. Specifically, I found that education/SES, 

physical health, and social and intellectual engagement, are each simultaneously 

associated with higher age-adjusted cognitive abilities across the adult lifespan, and that 

these associations are similar in magnitude and direction for two broad cognitive 

domains (fluid and crystallized). Mental health, although associated when tested with 

better cognitive outcomes in isolation, did not make unique contributions above the 

other three lifestyle factors. Because many of the activities included in my models are, 
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in principle, modifiable, my findings have encouraging implications for individuals and 

public health initiatives alike.  
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Chapter 3: A morphometric double 

dissociation: cortical thickness is more related 

to ageing; surface area is more related to 

cognition 

3.1 Chapter Summary  

The thickness and surface area of cortex are genetically distinct aspects of brain 

structure and may be affected differently by age. However, their potential to 

differentially predict age and cognitive abilities has been largely overlooked, likely 

because they are typically aggregated into the commonly used measure of volume. In a 

large sample of healthy adults (N=647, aged 18-88), I investigated the brain-age and 

brain-cognition relationships of thickness, surface area, and volume, plus five additional 

morphological shape metrics. Cortical thickness was the metric most strongly 

associated with age cross-sectionally, as well as exhibiting the steepest longitudinal 

change over time (subsample N=261, aged 25-84). In contrast, surface area was the best 

single predictor of age-residualized cognitive abilities (fluid intelligence), and changes 

in surface area were most strongly associated with cognitive change over time. These 

findings were replicated in an independent dataset (N=1345, aged 18-93). This chapter’s 

results suggest that cortical thickness and surface area make complementary 

contributions to the age-brain-cognition triangle and highlight the importance of 

considering these volumetric components separately.  
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The work in this chapter is currently under review and has been published as 

preprint online (Borgeest et al., 2021). 
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3.2 Introduction  

As the human brain ages, it undergoes a pronounced structural transformation. Even in 

the absence of neuropathology, overall brain volume shrinks – from age six onwards 

into old age (Bethlehem et al., 2021). This volume decline is associated with various 

physiological changes, including grey-matter reductions caused largely by the 

regression of dendrites (see Dickstein et al., 2007 for a review), and white-matter 

reductions stemming from axon demyelination (Fotenos et al., 2005; Gunning-Dixon et 

al., 2009; Raz, 2005; Scheltens et al., 1995). There are also morphological changes, with 

sulci for example becoming shallower (Burgmans et al., 2011; Jin et al., 2018; Madan, 2021; 

Peters, 2007) and cortex becoming more curved (Deppe et al., 2014).  

Traditionally, studies investigating human brain structure with Magnetic Resonance 

Imaging (MRI) have relied largely on volumetric or thickness measures (see Oschwald 

et al., 2020 for a review), which only capture a small proportion of the richness of age-

related morphometric changes (Ecker et al., 2010; Im et al., 2008). Indeed, the number 

of papers that include both the term “aging” and “brain volume” (N=2715 in a PubMed 

search as of 01/06/2021) or “cortical thickness” (N=597) far exceeds those investigating 

other aspects of morphology, such as “aging” combined with “surface area” (N=125) or 

“curvature” (N=23). Even though several authors have pointed out that volume is a 

product of cortical thickness and surface area (Norbom et al., 2021; Storsve et al., 2014; 

Walhovd et al., 2016; Winkler et al., 2018), which in turn are two genetically independent 

aspects of brain structure (Hofer et al., 2020; McKay et al., 2014; Panizzon et al., 2009; 

van der Meer et al., 2020), the implication that thickness and area may have dissociable 

causes (e.g., in ageing) and consequences (e.g., for cognition) have rarely been 

discussed, especially in adult samples. Moreover, additional detailed morphometric 

shape measures (such as curvature or sulcal depth) may provide further insight into 

brain development across the adult lifespan and its relationship with cognitive 

performance.  
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In this chapter, I explore multiple morphometric measures in two large adult-lifespan 

cohorts. I show, firstly, that the most pronounced structural changes in the ageing brain 

are the decrease in apparent cortical thickness (see Walhovd et al., 2017 for the 

interpreation of MR-derived cortical thickness) and increase in cortical curvature, in 

line with other studies (Deppe et al., 2014; Hogstrom et al., 2013; Lemaitre et al., 2012). 

Secondly, I find that incorporating multiple shape measures into a single model 

outperforms any individual metrics’ ability to capture age-related and fluid cognitive 

differences. This chapter’s main contribution, however, lies in providing cross-sectional 

and longitudinal evidence of a double dissociation in two independent, large-sample 

cohorts. Specifically, cortical thickness was more strongly associated with age than 

cortical surface area, while surface area was more strongly associated with cognition (as 

indexed by fluid intelligence). This pattern was most apparent longitudinally, but we 

also observed it cross-sectionally after adjusting for age. This double dissociation points 

to possibly distinct underlying biological processes (discussed below), and supports 

recent calls to investigate thickness and surface area separately (Winkler et al., 2018) as 

brain volume (a product of cortical thickness and surface area) likely conflates and 

therefore masks these differentiable effects.  

 

3.3 Methods  

3.3.1 Initial Cohort: Cam-CAN 

3.3.1.1  Participants  

Participants were drawn from the Cambridge Centre for Ageing and Neuroscience 

(Cam-CAN) study, which has been described in more detail elsewhere (Shafto et al., 

2014; Taylor et al., 2017). 708 healthy adults (359 women, 349 men) from the larger 

cohort were scanned, with approximately 100 people in each decade (age range 18-88, 
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Mean=53.4, Standard Deviation (sd) = 18.62). We used calendar age (years) as a measure 

of participants’ age. Cognitive ability was measured using the Cattell Culture Fair test 

of fluid intelligence (Cattell, 1971). For an age-independent measure of cognition, I 

calculated age-residualized fluid intelligence scores by regressing the Cattell raw scores 

on age. As explained in the previous Chapter, residuals adjust for age-expected declines, 

allowing, for example, an 80-year-old person with a relatively low absolute score to be 

considered cognitively healthier than a younger individual with a higher score.  

A subset of participants (N=261) was scanned twice, with an average interval between 

the first and the second scan of 1.33 years (sd = 0.66). Additionally, a (partially separate) 

subset of participants (N=233) completed the Cattell test twice with an average interval 

between the two cognitive tests of 6.0 years (sd = 0.67). Two waves of both brain and 

cognitive data were available for 115 participants.  

3.3.1.2 Imaging data acquisition and pre-processing  

T1- and T2-weighted 1 mm isotropic magnetic resonance imaging scans were available 

for 647 participants (Taylor et al., 2017). To ensure the quality of the image 

segmentations, I adapted a recently developed supervised learning tool (Klapwijk et al., 

2019), which led me to exclude six participants due to low-quality segmentations. Thus, 

quality control process is described further in the supplementary materials which are 

available on the Open Science Framework (https://osf.io/n6b4j/). In order to 

investigate (cross-sectional) brain morphology in as much detail as possible, I examined 

a total of eight brain metrics: in addition to three FreeSurfer-derived measures of 

cortical volume, thickness and surface area (derived from a standard FreeSurfer recon-

all pipeline), I examined total grey matter (TGM) derived from SPM 12 (voxel-based 

morphometry which includes sub-cortical grey-matter too, while FreeSurfer includes 

only cortical estimates; Ashburner et al., 2021) and four additional morphological 

measures: from Mindboggle (see Klein et al. 2017 for more detail) I derived sulcal depth, 

curvature and “thickinthehead” (a recently developed cortical thickness measure that 

avoids FreeSurfer’s reconstruction-based limitations); and from the calcFD toolbox 
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(Madan & Kensinger, 2016) I calculated fractal dimensionality as a measure of cortical 

complexity. First, to better understand the relationship between the eight brain 

structure metrics I calculated a correlation matrix and ran a Principal Component 

Analysis. To extract reliable brain structure estimates from the longitudinal subsample, 

images were automatically processed with FreeSurfer’s longitudinal stream (Reuter et 

al., 2012). This yielded co-registered measures of volume, cortical thickness, and surface 

area for the two waves. Note that I did not explore the other morphological metrics 

longitudinally because the Mindboggle and calcFD pipeline are not currently optimised 

for longitudinal data (see discussion). Brain regions were defined according to the 

Desikan-Killiany-Tourville (DKT) protocol, which yields 62 brain regions (Klein & 

Tourville, 2012).  

3.3.1.3  Cross-sectional analyses  

3.3.1.3.1 Whole brain analyses  

All analyses were carried out using R (R Core Team, 2013), and the code used for this 

Chapter is available on the Open Science Framework (https://osf.io/n6b4j/).  

First, I calculated whole brain as well as regional correlations between each metric and 

age, fluid intelligence and age-residualized fluid intelligence. Regional correlations were 

FDR corrected at alpha = 0.05. I next examined whether the different metrics of brain 

structure provided unique and complementary information about age and cognitive 

ability. To do so, I ran frequentist path models in which i) all eight metrics and ii) 

cortical thickness and surface area only predicted either age, fluid intelligence or age-

adjusted fluid intelligence. Path analysis is an extension of multiple linear regressions, 

allowing researchers to assess the relationships between the predictor variables rather 

than having several independent variables predict one dependent variable (Streiner, 

2005). 
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3.3.1.3.2 Regional analyses  

In Cam-CAN, after looking at whole brain correlations between the eight metrics and 

age, fluid intelligence and age-residualized fluid intelligence, I investigated these three 

correlations for each brain region. Regions were assigned 62 labels following the 

Desikan-Killiany-Tourville (DKT) protocol in the Mindboggle pipeline (Klein et al., 

2018), and then averaged across both hemispheres. All correlations were FDR-corrected 

at alpha = 0.05.  

3.3.1.4  Longitudinal analyses  

To assess neural and fluid intelligence change between time point 1 and time point 2, I 

fit a series of longitudinal structural equation models for each longitudinal FreeSurfer 

metric (whole brain volume, thickness and surface area) and fluid intelligence. Before 

assessing cognitive change, we also tested for longitudinal measurement invariance 

(Widaman et al., 2010). Additionally, as the second Cattell test was completed online by 

approximately half of the participants, versus pencil and paper by the other half, I 

investigated whether these two groups differed in their measurement properties by 

assessing metric invariance (constraining factor loadings) and scalar invariance 

(constraining intercepts). 

To understand whether cognitive change was correlated with morphometric change, 

and if so, whether this relationship differed for the different cortical metrics, I extracted 

and estimated the rates of cognitive and brain structure change in a series of second 

order latent change score models (Ferrer et al., 2008; Ferrer & McArdle, 2010; McArdle 

& Hamagami, 2001; McArdle & Nesselroade, 2003). Second order latent change score 

models (2LCSM) first estimate latent factors at each time point, and then estimate latent 

change over time. Steiger’s Z-Tests were performed to assess whether the change-

change relationships differed significantly between the different metrics (Steiger, 1980). 

Given that properties of the data, obtaining latent cognitive scores was not possible in 

the replication sample (see below), so we also ran the models with observed variables 
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only within Cam-CAN to ensure maximal comparability between the two sets of 

analyses.  We ran models on participants with at least one cognitive score (N=362) using 

full information maximum likelihood (FIML, which assumes data are missing-at-

random, Enders & Mansolf, 2018, and enables robust standard errors to account for 

missingness).  

3.3.2 Replication Cohort: LCBC  

To assess the robustness of our results, we investigated whether our core findings 

replicated in a second, independent dataset. To this end, we analysed data from the 

Centre for Lifespan Changes in Brain and Cognition at the University of Oslo (LCBC; 

https://www.oslobrains.no/), which is part of the European Lifebrain project (Walhovd 

et al., 2018) together with Cam-CAN and other publicly available datasets. The LCBC 

data consist of a collection of studies, which have been described elsewhere (Walhovd 

et al., 2016). Briefly, our analyses included 1236 adults aged 18-93 years (median = 37, sd 

= 20.64). We used WASI Matrix (raw scores) as our measure of fluid intelligence because 

it is most similar to the Cattell task assessed in Cam-CAN. FreeSurfer-derived cortical 

thickness, volume and surface area served as our morphological measures (for details 

on cross-sectional and longitudinal image acquisition and pre-processing see (Walhovd 

et al., 2016)). At least two waves of cognitive and/or neural data were available for 389 

participants. Where participants had more than two waves, we selected their first and 

last time point, maximizing the interval between waves as well as the data similarity 

between samples. This allowed us to include the largest possible number of participants 

in our longitudinal analyses while maintaining two-wave models comparable to those 

described in Cam-CAN. The mean interval between the two waves so defined was 5.18 

years (min = 0.73, max = 10.0, sd = 2.59 years).  

Our analysis pipeline mirrored that described above: cross-sectionally, whole brain 

correlations were followed by frequentist path models. Longitudinally, LCSMs assessed 

cognitive and neural change separately; and we ran a series 2LCSMs to investigate the 
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relationship between cognitive change and neural change. The FIML models included 

722 participants. Note that it was not possible to derive latent cognitive factor scores for 

the longitudinal models as individual WASI scores were not available, so the LCBC 

longitudinal models used observed cognitive variables (but were otherwise identical to 

Cam-CAN models). The LCSM data and analyses are described in more detail in the 

supplementary material.  

3.4 Results  

3.4.1 Descriptive statistics  

Tables 3-1 and 3-2 summarize the descriptive statistics of the Cam-CAN and LCBC 

cohorts.  

Cam-CAN  N Mean SD Median Min Max Skew  Kurtosis  

Age 641 54.04 18.56 54.00 18.00 88.00 -0.05 -1.15 

GM Volume 641 7114.64 899.87 4939.80 930.07 7034.19 0.36 -0.17 

Surface Area 641 3177.87    320.97    3157.00 2442.25    4445.75 0.38      0.09 

Thickness  641 2.66      0.12       2.67 2.19       2.98 -0.50 0.87 

Cattell  622 31.05 6.74 33.00 11.00 44.00 -0.56 -0.16 

Table 3-1: Descriptive statistics for Cam-CAN data. Cortical grey matter (GM) volume, area and 
thickness estimated from FreeSurfer.  

LCBC  N Mean SD Median Min Max Skew  Kurtosis  

Age 1236 41.55 20.32 31.95 18.0 93.35 0.71 -1.02 

GM Volume 1188 7453.09 853.41 5092.91 890.39 7441.81 0.14 -0.41 

Surface Area 1188 2630.76 246.85 2618.33 1859.63 3300.62 0.15 -0.32 

Thickness  1188 2.60 0.11 2.61 2.09 2.91 -0.38 -0.03 

WASI Matrix  1234 27.67 4.64 20.00 6.00 35.00 -.69 4.06 
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Table 3-2: Descriptive statistics for LCBC data. Cortical grey matter (GM) volume, area and thickness 
estimated from FreeSurfer. 

 

 

A correlation matrix of the eight brain structure measures (depicted in Figure 3-1) 

showed that the strongest correlations were those between FreeSurfer’s grey-matter 

volume (which includes only cortex) and SPM’s TGM (which includes subcortical areas, 

too) (r=.96), surface area and TGM (r=.93), and grey-matter volume and fractal 

dimensionality (r=.91). Curvature and Thickinthehead are also strongly correlated (r= -

.89). The weakest correlations were between depth and curvature (r=-.04), depth and 

thickness (r = 0.06) and depth and Thickinthehead (r = .13). Surface area and thickness, 

discussed in more detail below, were correlated only r=.16.  

 

Figure 3-1: Correlation matrix of the eight brain structure metrics. Total Grey Matter (TGM) was derived 
using SPM 12 (Ashburner et al., 2021). Fractal Dimensionality was calculated using the (Freesurfer-
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based) calcFD toolbox (Madan & Kensinger, 2016) . Surface Area, Thickness and Grey Matter Volume 
stem from FreeSurfer (Fischl, 2012), the remaining three metrics (travel depth, Thickinthehead, and 
curvature) from (FreeSurfer-based)Mindboggle (Klein et al., 2017).  

 

The Principal Component Analysis (shown in Figure 3-2) suggested that the eight 

metrics were best captured by two components, which captured 66 percent and 26 

percent of the variance, respectively. The first loaded approximately equally on all 

metrics, whereas the second loaded differentially on thickness metrics versus surface 

area, as well as curvature and travel depth. 

 

Figure 3-2: Results of the Principal Component Analysis 
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3.4.2 Cross-sectional results  

3.4.2.1  Whole brain results  

I first calculated whole brain as well as regional correlations between each metric and 

age, cognitive abilities (as indexed by fluid intelligence) and age-residualized cognitive 

abilities. Residualized cognitive scores allow one to separate concurrent age-related 

decline in cognitive ability, thus providing an age-independent measure of cognition.  

Thickinthehead, which is a measure of cortical thickness from the Mindboggle software, 

showed the strongest age correlation (r = -.83). This was followed by curvature (r = +.77), 

fractal dimensionality (a measure of cortical complexity; r = -.65) and FreeSurfer’s grey-

matter volume (r = -..62), as shown in Table 3-3 and plotted in Figure 3-3 and Figure 3-4. 

Compared to the other metrics, surface area exhibited the weakest age relationship (r = 

-.36). This order was reversed for age-residualized cognition. Here, surface area was the 

strongest predictor (r = +.21), while the two thickness metrics and curvature did not 

show significant brain-cognition correlations after adjusting for age. The two volume 

measures (FreeSurfer’s cortical volume, plus SPM’s cortical + subcortical volume) 

predicted both age and age-residualized fluid-intelligence reasonably well (rage ~ -.58 

and rcog ~ +.20), as would be expected since they are proportional to the product of 

cortical thickness and surface area. Fractal dimensionality was also a good predictor of 

both age and age-residualized cognition (rage= -.65, rcog = +.19).  
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Age 

 

Fluid Intelligence  

Age-residualized  

Fluid Intelligence  

Metric Pearson’s 

r 

P Pearson’s 

r 

P Pearson’s 

r 

P 

Cortical Volume (FS) -.62 <.001 +.56 <.001 +.20 <.001 

Cortical Thickness (FS) -.60 <.001 +.42 <.001 +.04 .33 

Surface Area (FS) -.36 <.001 +.39 <.001 +.21 <.001 

Thickinthehead (MB) -.83 <.001 +.59 <.001 +.04 .34 

Curvature (MB) +.77 <.001 -.56 <.001 -.034 .39 

Sulcal Depth (MB) -.38 <.001 +.51 <.001 +.07 .06 

GM Volume (SPM) -.54 <.001 +.51 <.001 +.20 <.001 

Fractal Dimensionality   -.65 <.001 +.56 <.001 +.19 <.001 

Table 3-3: correlations between brain structure and age, fluid intelligence and age-residualized fluid 
intelligence. GM = grey-matter. FS = FreeSurfer. SPM = Statistical Parametric Mapping. MB = 
Mindboggle. 
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Figure 3-3: brain structure-age, -fluid intelligence and -age-residualized fluid intelligence scatterplots of 
all eight metrics. Black lines show linear fit, red lines show quadratic fit. The metric exhibiting the 
strongest age relationship is Thickinthehead (a measure of cortical thickness), while surface area is 
most strongly related to age-residualized cognitive abilities. GM = Grey Matter, FD = Fractal 
Dimensionality; FldIn = fluid intelligence. 

 

 

Figure 3-4: Cross-sectional whole brain correlations in Cam-CAN (A-D) and LCBC (E-H). While 
thickness is associated with age (not age-residualized cognition), surface area captures age-residualized 
cognition well (and age comparatively poorly).  

 

Next, I estimated a series of path models to assess the relationship between brain 

structure and age, fluid intelligence and age-residualized fluid intelligence when i) 
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surface area and cortical thickness, and ii) all eight metrics, are included in the same 

model. These six models are depicted in Figure 3-5.  

 

Figure 3-5; Cam-CAN path model results. Models A-C: Both surface area and thickness are significantly 
associated with age and fluid intelligence, while age-residualized fluid intelligence is captured by 
surface area only. Full models (D-F). 

 

Age and fluid intelligence were best captured by surface area and cortical thickness, 

while age-residualized fluid intelligence was associated only with surface area (see 

Figure 3-5, A-C). For the full models (Figure 3-5, D-F), the total variance explained was 

76, 46 and 7 percent for age, fluid intelligence and age-residualized fluid intelligence, 

respectively – almost double the variance explained by thickness and area alone. 

Moreover, the fact that multiple morphometric measures provided partially 

complementary information about the outcome highlights the potential usefulness in 

assessing various morphological shape measures when investigating the ageing brain 

and cognitive abilities. For age, the best model included Thickness, Thickinthehead, 

Curvature, TGM and Surface Area. Fluid intelligence was best captured by 

Thickinthehead, Curvature, TGM, Surface Area, Thickness, Volume and FD. Finally, the 
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best model for age-residualized fluid intelligence included FD, Thickness, Depth and 

Thickinthehead. Interestingly, when FD was not included in the models, the best model 

for age-residualized fluid intelligence included surface area only, suggesting that surface 

area and FD capture similar variance.  

3.4.2.2 Regional results  

Table 3-4 depicts each metric’s top-three regions with the strongest age-, raw-cognition 

and age-residualized cognition effects. I excluded depth from this table because depth 

is a measure of sulci, not brain regions.  Note that data for the entorhinal, superior 

temporal gyrus and temporal pole were only available for Thickinthehead and Volume. 

The full table of FDR-corrected correlations between 32 brain regions (averaged across 

both hemispheres) and age, age-residualized cognitive abilities and raw cognitive 

abilities can be found in Appendix A.  

Overall, there were some interesting similarities and differences between the measures. 

The precentral gyrus was the region with the strongest age effects in five out of seven 

metrics: curvature (r=0.74), thickness (r=-0.66), Thickinthehead (r=-0.87), volume (r=-

0.71), TGM (r=0.-66). The precentral gyrus, along with the superior temporal and 

superior frontal gyrus, was also strongly associated with age-residualized cognitive 

abilities across several imaging metrics. For age-residualized cognition, the lateral 

orbitofrontal cortex was a significant predictor for volume (r=0.22), surface area (0.19). 

and TGM (r=0.22).  
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Metric Regions with 
strongest age 
effect 

r Regions with 
strongest raw-
cognition effect 

r Regions w 
strongest 
age-resid. 
cognition 
effect 

r 

Fractal 
Dimensionality  

Inferior parietal -0.56 Rostral middle 
frontal 

0.43 Isthmus 
cingulate  

0.18 

Rostral middle 
frontal 

-0.55 Precentral 0.43 Transverse 
temporal 

0.16 

Superior frontal -0.54 Supramarginal 0.43 Median 
orbitofrontal 

0.15 

Curvature  Precentral -0.74 Superior temporal  -0.53 Pericalcarine 0.069 

Supramarginal  -0.74 Supramarginal -0.51 Corpus 
callosum 

0.068 

Superior frontal -0.71 Precentral -0.50 Postcentral 0.049 

Thickness Precentral  -0.66 Precentral 0.50 Insula 0.11 

Superior frontal -0.65 Superior Temporal  0.46 Lingual 0.092 

Supramarginal -0.65 Superior frontal 0.44 Superior 
temporal 

0.078 

Thickinthehead Precentral -0.87 Precentral  0.61 Insula  0.081 

Middle temporal -0.82 Middle temporal 0.58 Temporal pole 0.079 

Supramarginal -0.81 Pars opercularis 0.58 Cuneus  0.072 

Volume Precentral -0.71 Precentral 0.60 Insula  0.22 

Superior frontal -0.61 Superior frontal 0.53 Lateral 
orbitofrontal 

0.22 

Superior temporal -0.61 Superior temporal 0.53 Pars orbitalis  0.19 

TGM Precentral -0.66 Precentral 0.55 Rostral 
middle frontal 

0.22 

Pars opercularis -0.62 Superior temporal 0.54 Lateral 
orbitofrontal 

0.22 

Superior parietal -0.61 Rostral middle 
frontal 

0.54 Pars orbitalis  0.21 

Surface area  Middle temporal -0.40 Lateral 
orbitofrontal 

0.40 Posterior 
cingulate 

0.20 

Rostral middle 
frontal 

-0.40 Middle temporal 0.39 Lateral 
orbitofrontal 

0.20 

Lateral 
orbitofrontal 

-0.39 Posterior cingulate 0.38 Superior 
frontal 

0.19 

 

Table 3-4: Regional correlations. Shows the top three regional correlations for age, raw fluid abilities 
and age-residualized fluid abilities. 
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The regional analyses further supported the full path models’ findings that it can be 

useful to assess multiple shape measures when investigating the ageing brain: for 

instance, while volume-age effects were most pronounced in the frontal regions, area-

age effects were strongest in the temporal lobes. Importantly, these findings could 

reflect random noise arising from selecting the “highest statistic” to compare across 

regions rather than constructing a static across regions. Still, it is plausible that the focus 

on frontal brain regions in the brain and cognitive ageing literature (Greenwood, 2000; 

Jung & Haier, 2007) is informed in part by the field’s traditional focus on brain volume, 

and that other aspects of brain structure could point to more underappreciated regional 

effects.   

Finally, the regional results were in line with the morphometric dichotomy found in the 

whole brain analyses. For cortical thickness, all 32 brain regions (averaged across the 

hemispheres) were significantly correlated with age (all correlations were FDR 

corrected at alpha = 0.05), while not a single region predicted age-residualized fluid 

intelligence. In contrast, for surface area, all regions were significantly associated with 

age-residualized fluid intelligence. While regional surface area also correlated with age, 

the correlations were substantially weaker than the brain-age correlations for cortical 

thickness. This dichotomy is shown in Figure 3-6.  
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Figure 3-6: Significant regional age- and age-residualized fluid intelligence correlations. Correlations are 
FDR corrected at alpha = 0.05.  

 

3.4.3 Longitudinal results  

Although cross-sectional analyses offer an interesting insight into age-related cognitive 

and morphometric differences, longitudinal data are needed to truly assess how brain 

and cognition change (Oschwald et al., 2020). Doing so, I found that the change-change 

relationship between surface area and cognition was significantly stronger than the 

change-change relationship between volume and cognition, as well as that between 

thickness and cognition. The longitudinal data is plotted in Figure 3-7.  

After establishing metric and scalar invariance (described in Appendix A), I used Latent 

Change Score Models (LCSM) to examine morphometric and cognitive change over 

time. The cognitive LCSM revealed significant change in cognition over time, as well as 

significant variability in the rate of change (Table 3-5, variances). The effect size of 

change of fluid intelligence was -0.09 (Cohen’s D, computed by dividing the mean 

change by the SD at time 1). The three brain-structure LCSMs also showed evidence of 

change over time (Table 3-5, intercepts) and of significant variability in the rate of 



Results  109 

 

change (Table 3-5, variances). Surface area, volume and thickness all decreased between 

the first and the second scan. Surface area had the smallest effect size (Cohen’s D = -

0.02), with cortical thickness and volume exhibiting larger effects (Cohen’s D of -0.12 

and -0.11, respectively). 

 

 

  Latent change score model results Cam-CAN  

  Estimate SE z-value p Std.all Effect 
size  

Cattell  Intercepts -0.633 0.289 -2.192 0.028 -0.145 -0.09 

Variances 19.059 2.808 6.787  <.0001 1.000  

Thickness Intercepts  -0.012 0.002 -6.234 <.0001 -0.386 -0.12 

Variances  0.001 0.000 7.229 <.0001 1.000   

Surface 
Area 

Intercepts  -5.680 1.632 -3.481 <.0001 -0.215 -0.02 

Variances  695.026 197.495 3.519 <.0001 1.000   

Volume Intercepts  -50.550   5.887 -8.587   <.0001 -0.530 -0.11 

Variances  9080.25 1057.968 8.587 <.0001 1.000   

 

 

 

       

Table 3-5: Latent change score model results for change in Cattell, surface area, thickness and volume 
over time. Effect size is calculated by dividing the mean change by the square root of the variance. 
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Figure 3-7: In Cam-CAN, cortical thickness, surface area and fluid intelligence declined significantly 
between time point 1 and time point 2 (average interval between the two time points = 1.33 years). 

Next, to investigate the relationship between cognitive change and morphometric 

change, I fit three second order latent change score models (2LCSM), one for each brain 

structure metric. I used full information maximum likelihood (FIML, Enders & Mansolf, 

2018) with robust standard errors to account for missing data. Results are shown in 

Table 3-6. 
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Data Model  CFI  Change-
change 
correlation 
(r) 

p 

Cam-CAN Area – Cognition  0.972 0.23 <0.001 

Thickness – Cognition  0.978 -0.022 0.71 

Volume – Cognition   0.975 0.11 0.068 

LCBC  Area – Cognition  0.987 0.35 <0.001 

Thickness – Cognition  0.994 0.21 <0.001 

Volume – Cognition  0.921 0.15 <0.001 
Table 3-6: Second order latent change score model results using FIML for missing data. Shows the 
relationship between change in brain structure (volume, thickness, area) and change in cognition in 
Cam-CAN and LCBC. In both datasets, change in surface area was most strongly associated with 
cognitive change. 

 

All three models fit the data well: CFI area = 0.972; CFI volume = 0.975; CFI thickness = 0.978; 

(further model fit indices can be found in Appendix A). After fitting the models, I 

extracted and correlated the cognitive rates of change with the brain structural rates of 

change. Change in surface area showed the largest effect (r = +.23, p <.001), followed by 

(non-significantly) volume (r=-.11, p = 0.068) and cortical thickness (r=-.022, p = 0.71). 

The Steiger’s-Z tests (Steiger, 1980) in the R package “psych” can directly compare 

differences in correlation strengths, accounting for the full correlation pattern among 

variables. Doing so revealed that change in area was significantly more strongly 

associated with change in cognition than was thickness or volume change (see Table 3-

7).  
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Data Comparison   r values  N Z p 

Cam-CAN Thickness / Area   -0.022/0.23 362 3.34 0.001 

Thickness / Volume  -0.022/0.11 362 1.66 0.1 

Volume / Area  0.11/0.23 362 1.77 0.04 

LCBC  Thickness / Area   0.21/0.35 722 2.89 0.001 

Thickness / Volume  0.21/0.15 722 1.18 0.24 

Volume / Area  0.15/0.35 722 4.06 0.001 

Table 3-7: Steiger's Z Test results. P-value (two-tailed) of <0.05 suggests correlation coefficients are 
significantly different from each other. 

These results suggest that people whose surface area decreased more quickly also 

showed steeper rates of cognitive decline; an effect not found for thickness or volume.  

Note that the models shown above include observed (not latent) variables to ensure 

maximum comparability between the LCBC and Cam-CAN models (in LCBC, it was not 

possible to derive latent cognitive scores because only WASI sum scores were available). 

However, latent variable Cam-CAN models (which we had run initially, before the 

replication study) show the same pattern, with changes in surface area most strongly 

associated with changes in cognition (r=0.44, p <0.001). For these models, changes in 

volume were significantly associated with changes in fluid intelligence (r=0.26, p = 

<0.001), while this relationship remained insignificant for cortical thickness (r = 0.0047, 

p = 0.94). All longitudinal change score model results are plotted in Appendix A.  

3.4.4 Replication results  

To examine whether the cross-sectional and longitudinal findings generalise to other 

cohorts, I next (after finalizing the analyses in Cam-CAN) examined the same 

associations in an independent sample, the LCBC data. Because of their widespread use 
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and accessibility, we included the three FreeSurfer-derived metrics (thickness, area, 

volume) in our replication analyses (Figure 3-8).  

 

Figure 3-8: The relationship between age, brain structure and cognition in LCBC. 

Cross-sectionally, thickness showed the strongest whole brain-age correlation (r= -.78, 

p < 0.001), followed by volume (r = -.64, p < 0.001) then surface area (r = -.34, p < 0.001). 

For age-residualized fluid intelligence, thickness had the weakest correlation (r = +.077, 

p = 0.009), followed by surface area (r = +.15, p = 0.001) and volume (r = +.16, p < 0.001). 

The surface area and thickness results are plotted Figure 3-4 (E-H) above. As was the 

case in Cam-CAN, the frequentist path models revealed that the best models to predict 

age and fluid intelligence were comprised of both surface area and thickness, while age-

residualized fluid intelligence was best captured by surface area alone (Figure 3-9). 

 

Figure 3-9: LCBC path model results. Both surface area and thickness are significantly associated with 
age and fluid intelligence, while age-residualized fluid intelligence is captured by surface area only.   
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Longitudinally, I found evidence of significant change over time for the three-brain 

metrics (Table 3-8, intercepts), and significant variability over time for the brain metrics 

and cognition (Table 3-8Error! Reference source not found., variances). A lack of 

mean cognitive decline can most likely be attributed to test-retest effects, but still allows 

for investigation of individual differences in change.  

  Latent change score model results LCBC   

  Estimate SE z-value p Std.all Effect 
size  

WASI 
Matrix   

Intercepts -0.247 0.166 -1.488 0.137 -0.078 -0.051 

Variances 10.069 1.246 8.080 <.0001 1.000  

Thickness Intercepts  -0.039 0.002 -19.815 <.0001 -1.039 -0.340 

Variances  0.001 0.000 12.191 <.0001 1.000   

Surface 
Area 

Intercepts  -14.853 1.935 -7.678 <.0001 -0.412 -0.059 

Variances  1301.028 187.252 20.513 <.0001 1.000   

Volume Intercepts  -130.745 8.885 -14.716 <.0001 -0.806 -0.15 

Variances  26327.152 2368.341 11.116 <.0001 1.000   

 
Table 3-8: LCBC data latent change score model results for change in WASI Matrix, surface area, 
thickness, and volume over time. Effect size is calculated by dividing the mean change by the square 
root of the variance. 

As shown in Table 3-6, the three 2LCMs fit the data well: CFI area = 0.987; CFI volume 

= 0.921; CFI thickness = 0.994. Change in all structural brain metrics was significantly 

associated with change in cognition, with surface area showing the largest effect (r = 

+.35, p <.001), followed by thickness (r=+.21, p <.001), then volume (r=+.15, p =0.001). 

The Steiger’s Z-Test revealed that the change-change relationship between area and 

cognition was significantly stronger than that between volume and cognition and 

thickness and cognition (Table 3-7).  

The LCBC results therefore successfully replicated Cam-CAN’s cross-sectional and 

longitudinal results, further supporting the finding that changes in surface area predict 
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changes in cognition, and that this relationship is stronger than that between change in 

thickness and change in cognition.  

3.5 Discussion  

3.5.1 A morphometric double dissociation   

Across two independent cohorts, I found evidence of a morphometric double 

dissociation: cortical thickness was more strongly associated with age than cortical 

surface area, both cross-sectionally and longitudinally, whereas surface area was more 

strongly associated with cognition (fluid intelligence); certainly longitudinally, and also 

cross-sectionally, after removing age-related variance. Note that I am not claiming that 

cortical thickness plays no role in cognition – it shows a longitudinal association with 

cognitive change in one of the two datasets (albeit significantly smaller than that of 

surface area), and its cross-sectional association with fluid intelligence was significant. 

The lack of cross-sectional association with age-residualized fluid intelligence could be 

due to collider bias whereby cortical thickness is causally related to both age and 

cognition and that any thickness-cognition effect disappears when removing age. This 

chapter’s results do suggest, however, that surface area and thickness, which tend to be 

investigated together through the aggregate measure of volume, may have dissociable 

causes (e.g., in ageing) and consequences (e.g., for cognition).  

These findings align with previous studies that have pointed to a relationship between 

surface area and cognition (Cox et al., 2018; Fjell et al., 2015; Gerrits et al., 2016) and 

support recent calls to focus on the distinctness of cortical thickness and surface area, 

rather than assessing them jointly through cortical volume (Winkler et al., 2018). Such 

a shift is not just of theoretical or methodological importance: because surface area and 

cortical thickness are known to be genetically distinct (Panizzon et al., 2009; Winkler 

et al., 2010) and to follow different trajectories over the lifespan (Fjell et al., 2015; 
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Hogstrom et al., 2013), combining them into volume is likely to obscure important 

biological differences and mechanisms.  

While I can, in the present study, only speculate on the biological basis of different 

morphological metrics (and therefore their age/cognition dichotomy), evidence from 

animal and histological studies point to a possibly relevant set of mechanisms. With 

age, the long dendrites of pyramidal neurons have been shown to decrease rapidly 

across all layers of the cortex (Jacobs et al., 2001; Nakamura et al., 1985; Panizzon et al., 

2009) and especially in layer V – the internal pyramidal layer – which contains the 

majority of large pyramidal neurons and is therefore the thickest of the six cortical layers 

– at least after the age of 50 (de Brabander et al., 1998). Thus, the steep declines in 

cortical thickness observed in the present study (and elsewhere, e.g., Lemaitre et al., 

2012; Chen et al., 2011) are likely in part due to dendritic shrinkage (Goriounova & 

Mansvelder, 2019).  

Furthermore, the finding that cortical thickness is less strongly associated with 

cognitive abilities than other measures of brain structure is also supported by animal 

research, showing that rates of dendritic atrophy in rats did not differ between aged 

cognitive unpaired and aged cognitive impaired animals (Allard et al., 2012)  

What, if not dendritic atrophy, is driving cognitive differences and cognitive change, 

and why might cognition be related to surface area? According to the radial unit 

hypothesis (Rakic, 2000), while the development of cortical thickness is driven by the 

layers in the cortical columns (as described above), the development of surface area is a 

product of the number of radial columns perpendicular to the pial surface. This theory 

has been updated via the Supragranular Cortex Expansion Hypothesis (Nowakowski et 

al., 2016), which postulates that specific cellular mechanisms allow certain types of glial 

cells to migrate towards the pial surface during development, thereby expanding the 

cortex, and that this process is, in turn, responsible for many of the cognitive features 

unique to primates. This is further supported by analyses suggesting that glial cells – 
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and specifically glial-neural signalling – affect cognition (Chung et al., 2015). A plausible 

hypothesis therefore is that MR-derived surface area (at least partially) picks up on these 

glial-dependent neural mechanisms – which likely originate in early development – and 

thereby cause cognitive differences and changes.  

3.5.2 The shape of the ageing brain  

A second contribution this chapter makes is to characterize structural age-related 

differences and changes across multiple morphological metrics. While there have been 

multiple robust studies comparing different imaging metrics (Hutton et al., 2009; Im et 

al., 2008; Lövdén et al., 2013b; Pantazis et al., 2010; Shimony et al., 2016; Y. Wang et al., 

2019; Wierenga et al., 2014), few have included the breadth of morphometry assessed 

here. This approach, therefore, allowed me to directly compare the magnitude of 

cortical age-related differences and changes across a range of metrics.  

The biggest age-related change (cross-sectionally and longitudinally) was that of 

cortical thickness, followed (cross-sectionally) by curvature. This suggests that the most 

striking structural transformation the human brain undergoes with age – at least of 

those detectable with MRI – is that the cortex thins while also becoming more ‘curved’. 

The width and depth of cortical sulci might influence the complexity metric, such that 

more atrophied brains might exhibit an increase in gyral complexity but not a decrease 

in surface area (Narr, et al., 2004; Lemaitre et al., 2012).  

We also show that combining shape measures outperforms any individual metrics’ 

ability to capture age-related and cognitive differences: together, the eight 

morphometric metrics assessed here explained almost double the variance compared to 

that captured by thickness and surface area alone. Thus, the fact that multiple 

morphometric measures provided partially complementary information about the 

outcome highlights the potential usefulness in assessing various morphological shape 

measures when investigating the ageing brain and cognitive abilities.   
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3.5.3 Methodological strengths and limitations 

In addition to the large sample size and the assessment of multiple shape metrics, the 

integration of cross-sectional and longitudinal data is of note. As discussed in Chapter 

1, recent reviews and commentaries have pointed to the limitations of cross-sectional 

analyses when investigating brain-cognition relationships in the ageing brain (see 

Oschwald 2020 for a discussion). While I agree that collecting longitudinal data is 

almost always preferable, I acknowledge that it is not always attainable. The present 

approach of integrating cross-sectional and longitudinal data, where the latter largely 

confirmed the findings of the former, offers some validation of cross-sectional 

approaches.  

Another key strength of this chapter is the successful replication of the cross-sectional 

and longitudinal findings in an independent cohort. In doing so, I not only validated 

the apparent existence of the morphological double dissociation, but showed that it is 

not subject to specific features of the Cam-CAN data. Indeed, replicating our results 

despite important differences between the two datasets increases the robustness of our 

findings considerably. For instance, the cognitive tests differed (Cattell in Cam-CAN, 

WASI Matrix in LCBC), suggesting that surface area captures the broader construct of 

fluid intelligence (rather than test-specific features). Moreover, while the morphological 

metrics assessed in our initial Cam-CAN study offered an intriguing description of the 

ageing brain, obtaining them required five separate processing pipelines: FreeSurfer 

(Fischl, 2012), FreeSurfer Long (Reuter et al., 2012), Mindboggle (Klein et al., 2017), SPM 

(Ashburner & Friston, 2000) and the Fractal Dimensionality Toolbox calcFD (Madan & 

Kensinger, 2016).  The fact that our results replicated in canonical metrics (all of which 

are part of the standard FreeSurfer output) might lower the threshold for future research 

to, where appropriate, investigate surface area and cortical thickness separately.   

The breadth of structural brain metrics reviewed in this Chapter also comes with some 

important limitations. First, I was not able to investigate the changes of several of the 
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metrics which I had assessed in our cross-sectional analyses. This is because the 

pipelines used to calculate these additional metrics (e.g., Mindboggle) are not yet 

optimised for longitudinal data. This is particularly pertinent to curvature, which 

showed a very strong age effect cross-sectionally, but would have been interesting to 

explore longitudinally. Likewise, fractal dimensionality, which measures cortical 

complexity and correlated strongly with age and cognition in our cross-sectional 

analyses, might be a promising candidate for future longitudinal investigations.  

3.6 Conclusion  

In this Chapter, I describe cross-sectional and longitudinal evidence for a brain-

cognition double dissociation: two morphological metrics, surface area and cortical 

thickness, which tend to be investigated together through grey matter volume, are 

differentially associated with age and fluid intelligence: while thickness is strongly 

associated with age, it has weak associations with change in fluid intelligence – a pattern 

that is reversed for surface area, which captures cognitive change and difference well, 

and age relatively poorly. I would therefore argue that rather than using grey matter 

volume as the default measure, researchers should choose structural brain metrics 

depending on the question under investigation. Doing so will allow us to advance our 

understanding of the functional significance of these dissociable aspects of brain 

morphology.  
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Chapter 4: Morphometry as a mediator in the 

lifestyle – cognition relationship  

4.1 Chapter Summary  

After finding relationships between a more active lifestyle and better cognitive abilities 

(Chapter 2), as well as between brain structure and cognitive ageing (Chapter 3), I 

wanted to build on these chapters by better understanding the role brain structure plays 

in the link between lifestyle and cognition. Specifically, I was interested in whether grey 

matter mediates – that is, statistically accounts for part of – the lifestyle-cognition 

association. In other words, to examine the magnitude of effects under the assumption 

that lifestyle differences affect brain structure, which in turn affect cognitive 

performance in old age. To study this question, a first set of analyses explored how grey-

matter volume mediates the relationship between Chapter 2’s lifestyle factors and fluid 

cognition. I observed significant mediation effects for all five lifestyle-cognition 

associations, but the proportion mediated was largest for physical health: grey-matter 

volume explained 31 percent of the association between the latent Physical Health factor 

and fluid cognitive abilities.  

To further explore the mediating role of brain structure in the physical health – 

cognition relationship, I next moved away from the latent factor (which was comprised 

of a set of variables unique to Cam-CAN and is therefore not readily replicable across 

cohorts) and zoomed in on of the latent factor’s key components: systolic blood pressure. 

This proxy for cardiovascular health is widely measured in ageing samples, including 

both the Cam-CAN and LCBC cohorts. This allowed me to focus on a specific, replicable, 

and mechanistically plausible question: how does brain structure mediate the 
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relationship between cardiovascular health (as indexed by systolic blood pressure) and 

cognitive abilities? In both Cam-CAN (N=641) and LCBC (N=835) grey-matter volume 

mediated a substantial percentage of the relationship between systolic blood pressure 

and cognitive abilities. However, as shown in Chapter 3, volume is an aggregate 

morphometric measure. As such, it may mask the potentially different roles cortical 

thickness and surface area play in mediating the physical health – cognition 

relationship. Strikingly, we observed just such a dissociation: Using equality-

constrained model comparisons, we found that the grey-matter volume mediation was 

comprised of two dissociable effects: cortical thickness related to the blood pressure-

brain components (a-paths), but surface area related to the brain-cognition 

components (b-paths) of the mediation models. I discuss the biological mechanisms 

that might underlie this pattern and note the implications for mediation models relying 

on composite indicators. These effects were observed in time-lagged cross-sectional 

data, where we can be confident about the temporal sequence of the measurements and 

replicated across two large-sample cohorts. However, one limitation on generalisation 

is that we did not observe the same effects in a smaller subset of the data for which we 

have true longitudinal measurements:  changes in blood pressure did not predict 

changes in cognitive abilities. I discuss how and why this weakens the strength of the 

evidence and limits the possibility of causal inference. 

4.2 Introduction  

The goal of this chapter is to build on the core findings of the previous two chapters by 

assessing lifestyle, brain structure and cognition simultaneously. The following 

introductory section frames these analyses by discussing the evidence concerning two 

important questions: i) how good is the evidence that there is, in fact, a causal link 

between lifestyle (and especially physical health) and cognition, and ii), what role does 

brain structure play in this relationship? This introduction will show that the evidence 

for a causal lifestyle cognition effect in humans is, overall, mixed, but that there is good 
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evidence supporting the effectiveness of multimodal and exercise interventions on 

improved or maintained cognitive performance. I will then discuss the biological 

mechanisms that likely underpin the effect of exercise on cognitive performance as well 

as whether MR-derived brain structure can be used to partially capture such 

mechanisms. Finally, I will discuss the concept of mediations: can brain structure 

mediate the relationship between exercise and cognitive abilities, and if so, what does 

that tell us about the age-brain-cognition triangle?  

4.2.1 How good is the evidence of a causal lifestyle – cognition 

relationship? 

An intriguing promise is often made: “live an active life – one enriched by social, 

intellectual and physical activities – and you shall be cognitively healthier for longer”. 

An even more hopeful idea is that lifestyle changes in mid- or even late-life – such as 

picking up a sport or learning an instrument in middle or old age – can still alter the 

course of cognitive decline (rather than such protective effects needing to accumulate 

over a lifetime of healthy choices). But just how good is the evidence of a causal link 

between (changes to) lifestyle activities and cognitive health?  

The cross-sectional association between lifestyle and cognitive performance is well 

established, with studies pointing to positive correlations between social, physical or 

intellectual engagement and cognitive abilities (Fratiglioni et al., 2004; Hertzog et al., 

2008; Lindenberger, 2014; Stern, 2009), as discussed in more detailed in Chapter 2. 

Longitudinal designs, too, have shown that change in engagement in activities is 

positively associated with change in cognitive functions in older adults, suggesting that 

improvements to one’s lifestyle attenuate cognitive decline. This effect has been found 

for physical activities (Angevaren et al., 2010; Ku et al., 2014; Larson et al., 2006; Lindwall 

et al., 2012; Small et al., 2012b), cognitive activities (Mitchell et al., 2012; Small et al., 

2012b), social activities (Brown et al., 2016; Lövdén et al., 2005) as well as for composites 

of different kinds of lifestyle engagement (Bielak et al., 2007, 2012). Such studies have 
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led scientists to conclude that about a third of Alzheimer’s disease (AD) cases (and an 

even larger proportion of non-clinical cognitive decline) worldwide were attributable to 

potentially modifiable risk factors (Norton et al., 2014). This claim is further supported 

by findings of a large Lancet Commission (Livingston et al., 2017), which recommends 

being  “ambitious about prevention” of dementia and cognitive decline, focusing on 

interventions to build up resilience and healthier lifestyles.  

However, as discussed in the General Introduction (Chapter 1), cross-sectional and 

longitudinal study designs do not readily allow for a causal interpretation of the data: 

there could be reverse causation (better cognitive health leading people to engage in 

more challenging lifestyle activities), or lifestyle and cognition could be causally affected 

by a third, independent variable such as socioeconomic status.  To assess whether 

lifestyle changes cause improvements in cognition, experimental manipulations in 

forms of randomized controlled trials (RCTs) are needed: these allow researchers to 

compare two groups of individuals who differ only in the lifestyle intervention they 

receive. That way, whatever cognitive difference is found between the two groups 

following the trial should, in principle, be due to the intervention itself.  

To date, there are few large-sample RCTs assessing “multi-domain” activities, where 

multiple aspects of people’s lives such as diet, cognitive training and social activities 

were targeted simultaneously. The first such study, the Finnish Geriatric Intervention 

Study to Prevent Cognitive Impairment and Disability (FINGER), which included 1260 

elderly adults (age 60-77) who were at risk of cognitive decline, found that the two-year 

intervention had significant beneficial effects on cognitive change overall, as well as on 

processing speed, executive function and complex memory tasks (Ngandu et al., 2015). 

The intervention also benefited non-cognitive outcomes including BMI, diet, physical 

activity and quality of life. The promising results of the FINGER intervention has led to 

the launch of the Worldwide FINGERS network in 2017 (https://wwfingers.com/), with 

data being collected across the globe to further assess the potential usefulness of this 

intervention.  However, two other large-sample RCT studies with similar designs to the 

FINGER model (the French Multidomain Alzheimer Preventive Trial (MAPT, N = 1860) 
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and the Dutch Prevention of Dementia by Intensive Vascular Care (PreDIVA, N = 5326)) 

showed more mixed results: in both studies, the primary outcome – a decrease in 

dementia incidence – was not shown, even though secondary cognitive measures (such 

as orientation and short-term memory) showed some improvement following the 

interventions. Together, these RCT results suggest that multimodal interventions might 

improve cognitive performance in healthy adults, but are not sufficient to prevent or 

slow down diseases like Mild Cognitive Impairment (MCI) or AD (Kivipelto et al., 2018).    

A 2017 systematic review (Kane  et al., 2017) paints a similarly mixed picture of the 

benefit of interventions. The authors assessed the effectiveness of 13 types of 

interventions (e.g., cognitive training, physical activity, diet or vitamin supplements) in 

a total of 263 studies for preventing or delaying the onset of age-related cognitive 

decline, MCI and AD. They concluded that there was no “high strength” evidence 

(defined as RCTs with a low risk of bias, with consistent, direct, and precise domains; 

see discussion on strengths of evidence and their impact on policy in Chapter 5 

regarding the effectiveness of any of these interventions). However, the authors note 

that most of the included studies were small, targeted interventions, and that 

multimodal, large-sample designs such as the FINGER trial (which they discuss but do 

not include in their formal systematic review) could be a promising intervention 

strategy. The one intervention method that likely does have a positive effect on 

cognition, however, is exercise. Here, the authors conclude that “although physical 

activity interventions show no consistent benefit in preventing cognitive decline, the 

proportion of results showing benefit was unlikely to be explained solely by chance, 

providing a signal of a possible relationship” (Kane. et al., 2017, p. vii). Similarly, a meta-

analysis of aerobic exercise RCTs concluded that aerobic exercise training is associated 

with modest improvements in attention and processing speed, executive function and 

memory (Smith et al., 2010). Studies using observational data also report this positive 

effect of exercise: in an analysis of four longitudinal studies (N=604, participants aged 

80 and older at the time of first examination) using multilevel linear mixed models, 

Lindwall and colleagues observed change-change relationships between physical 
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activity and cognitive performance in some but not all cognitive domains. Most 

consistently, change in physical activity was related to change in reasoning (in 4 of 4 

studies), and less so to change in fluency (2 of 3 studies), memory (2 of 4 studies) and 

semantic knowledge (2 of 4 studies Lindwall et al., 2012).  

The follow-up report of the above-mentioned Lancet commission drew a similar 

conclusion, leading it to categorize seven of the 12 modifiable risk factors for dementia 

and cognitive decline as “physical health factors” (Livingston et al., 2020): hypertension, 

obesity, physical inactivity, alcohol consumption, smoking, head injury and diabetes. 

(The other factors were air pollution, less education, infrequent social contact, 

depression, and hearing impairment.) The relative robustness of the effect of physical 

health and activity on cognitive health might, in part, be due to there being more 

published papers on that association compared to on those other aspects of lifestyle and 

cognitive abilities. For instance, a PubMed search in February 2022 with the keywords 

“physical health” and “cognition” in papers’ titles or abstracts yielded 7511 results, 

whereas the words “lifestyle” and “cognition” showed 1173 results.  Equally (and perhaps 

more) plausible, however, is the interpretation that there is a relationship between 

physical health and cognitive performance, and that the former does, in fact, causally 

affect the latter. If such an effect exists, there should be testable biological mechanisms 

underpinning this relationship. To examine this question, a good understanding of the 

neural effects of exercise is warranted.  

4.2.1.1 The biological mechanisms of the exercise – cognition relationship  

In 1947, Donald Hebb showed that housing rodents in an environment enriched with 

balls, ladders, running wheels, tunnels and other complicated toys – as opposed to in 

an empty cage – improved their learning abilities and memory  (Hebb, 1947). Beneficial 

effects of such “enriched environments” on rodent brain and behaviour have since been 

reported in dozens of studies, suggesting that intellectually, physically and socially 

complex environments induce neural plasticity and, in turn, enhance cognitive 

functions (for reviews see Nithianantharajah & Hannan, 2006; van Praag et al., 2000). 
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This, of course, led researchers to hypothesize that this form of complexity – engaging 

in novel, cognitively challenging activities – could also protect humans from cognitive 

decline and dementia (M. C. Carlson et al., 2012; Hertzog et al., 2008). Then, a 2011 study 

steered the conversation in a different direction: Kobilo and colleagues showed that 

running wheels were the key determinant of neuroplasticity and cognition-

enhancement (rather than the balls, tunnels or toys): Enriched environments without 

running wheels did not improve the rats’ memory, but a cage containing only running 

wheels did (Kobilo et al., 2011; Mustroph et al., 2012). This suggests it is the challenging 

cardiovascular exercise that is the key cognition-enhancing factor.  

The brain-derived neurotrophic factor (BDNF) protein plays a crucial role in the 

mechanisms underlying exercise-induced cognitive improvements. Often called the 

‘gatekeeper to neural plasticity’ (Cowansage et al., 2010), BDNF is known to support 

neural survival, synaptic functioning, axonal growth and many other aspects of neural 

development and functioning (Cowansage et al., 2010; Gorski et al., 2003; Matsunaga et 

al., 2004). Importantly for this chapter, BDNF can be triggered environmentally: not 

only has BDNF been found to increase following exercise in rodents, but blocking BDNF 

has been found to diminish the cognitive improvements otherwise induced by exercise, 

suggesting that BDNF is, indeed, necessary to observe exercise-induced cellular effects 

(Miranda et al., 2019). How does aerobic activity elevate BDNF levels in the brain? The 

main hypothesis here is that higher metabolic rates during exercise lead to a secretion 

of signalling molecules that subsequently upregulate BDNF levels (Morland et al., 2017). 

In adults, this effect is thought to be both immediate and (relatively) long-lasting, with 

higher BDNF levels found two weeks following a single aerobic exercise session 

(Hopkins et al., 2011). Regular exercise, conversely, may lead to permanently higher 

levels of BDNF, priming the brain to be better prepared for learning experience and 

other cognitive tasks (Miranda et al., 2019): according to a meta-analysis, regular 

exercise intensifies the effect of a single session of exercise on BDNF levels in humans 

(Szuhany et al., 2015) – a potentially relevant finding for future interventions. Note, 

however, that BDNF research (especially in humans) is likely subject to publication bias, 
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with some authors arguing that the effect of BDNF-induced cognitive improvements is 

being exaggerated in the literature (Dodds et al., 2013). 

Meanwhile, BDNF declines with age, as evident from animal (Matsunaga et al., 2004) 

and human (Driscoll et al., 2012) studies, the latter of which have shown that BDNF 

levels (measured in the blood) predict both hippocampal volume and cognitive 

functioning (Erickson et al., 2010). Importantly, BDNF levels still increase in aged 

animals following exercise, although these effects are not as robust as those seen in 

younger animals (Praag et al., 2005). Taken together, it seems likely that this protein, 

whose levels increase with exercise and decrease with age, and which is known to affect 

cognition, provides a plausible mechanism for explaining the cognitive benefits of 

exercise-based interventions. 

4.2.1.2 Morphometric correlates  

In the absence of direct measures of BDNF, can MR-derived metrics of brain structure 

capture exercise-induced cognitive improvements? I would argue that they can, 

partially. As  BDNF has been linked to neurogenesis and increased dendritic complexity 

(Rossi et al., 2006), I argue that cortical thickness (as well as subcortical, e.g., 

hippocampal, volume) should be most sensitive to this effect (Jan & Jan, 2010). In 

contrast, MRI measures that are not, or only weakly, associated with dendritic changes 

(such as FreeSurfer-derived cortical surface area) should be less strongly associated with 

exercise or cardiovascular measures. I will outline – and then test – this hypothesis in 

more detail below. First, I will discuss existing empirical evidence regarding the 

associations between MR-derived brain structure and exercise-cognition relationship in 

humans.  

In one study (N=2000), people who were more physically active in mid-life had larger 

total brain volume 20 years later compared to less active participants, with regions in 

the frontal lobe showing the strongest associations (Rovio et al., 2010). Several other 

papers found hippocampal effects, with aerobic exercise interventions, for  instance, 
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leading to increases in hippocampal volume (Erickson et al., 2011). In general, regional 

specificity should be expected as post-mortem and animal studies have shown that 

BDNF does not present uniformly across the brain (Miranda et al., 2019); exercise-

induced plasticity should therefore follow the molecular pathways of BDNF expression. 

White matter, too, has been linked to physical health and exercise, with some studies 

pointing to increased white matter volume (Driscoll et al., 2012; Strömmer et al., 2020).  

However, other studies found no such associations (Podewils et al., 2007; Rovio et al., 

2010). A 2016 systematic review concluded that there is moderate evidence of links 

between physical health and white matter structure (Sexton et al., 2016). Overall, these 

studies support the hypothesis that MR-derived brain structure metrics can detect 

aspects of the exercise-cognition effect, and that they do, in part, reflect BDNF-affected 

processes. 

For observational (i.e., non-interventional) data, yet stronger support for this 

hypothesis would come by integrating patterns of findings into a plausible mechanistic 

model, rather than stopping at showing only simple associations between pairs of 

variables. This is because univariate associations between exercise and brain structure 

alone could, in principle, reflect changes to brain structure that do not necessarily play 

a mechanistic or causal role in supporting maintained cognitive performance in old age; 

in other words, they could be an irrelevant by-product of increased exercise rather than 

the reason for improved cognitive abilities. Likewise, associations between brain 

structure and cognition may not be due to exercise. Nonetheless, if there is a 

relationship between aerobic fitness and cognitive performance, and if this relationship 

is caused by (perhaps BDNF-induced) changes to brain structure, then brain structure 

should mediate – that is, statistically account for part of – the relationship between 

aerobic activity and cognition.  
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Figure 4-1: Schematic representation of a mediation. 

To date, there are only a handful of studies that assess the exercise-grey-matter-

cognition relationship with mediation models. A study of 310 older adults with MCI 

reported that benefits of physical exercise on memory performance were mediated by 

hippocampal volume (Makizako et al., 2015). Weinstein and colleagues showed that 

grey-matter volume in several prefrontal brain regions mediated the relationship 

between fitness and executive function and working memory (Weinstein et al., 2012). 

Finally, Verstynen and colleagues found that dorsal striatum volume (specifically the 

caudate nucleus) statistically mediated the relationship between fitness and cognitive 

flexibility, a function thought to be supported by this region (Verstynen et al., 2012).  

Mediation models assume that part of or all variance shared between two variables is 

also shared by a third variable, which has been used to argue that the third variable is 

causing the association between the other two variables  (Shrout & Bolger, 2002). Such 

causal interpretations are often problematic, particularly when mediation models are 

run on cross-sectional data, as is the case in the studies cited above (Raz & Lindenberger, 

2011). At their core, mediation models conducted on observational, cross-sectional data 

contain a series of regression coefficients: 1 bivariate regression coefficient (i.e., a) and 

2 partial correlation coefficients (i.e., b and c′; see Figure 4-1). Because the “mediator” 

variable (M) is only correlational (rather than truly interventional), its causal role is 

ambiguous: there are many alternative explanations for an observed correlational 

pattern which cannot be ruled out, such as reverse causation (for example, it is possible 

that cognition mediates the relationship between lifestyle and brain structure rather 

than lifestyle mediating the relationship between cognition and brain structure). Cross-
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sectional (as opposed to longitudinal) mediation models are particularly vulnerable to 

reverse causation because in cross-sectional data, the assumption of correct temporal 

ordering of the variables can potentially be violated (Maxwell et al., 2011; Maxwell & 

Cole, 2007). In an observational (i.e., non-interventional) setting, if the dependent and 

independent variables are collected at the same time, then there really is no way of 

inferring (from the data alone) the directionality of an observed effect. Of course, this 

basic statistical issue – that correlation is not equal to causation – is not specific to 

mediations; it affects all regression analyses. However, it is of particular importance in 

the context of mediations because mediations have, as mentioned above, often been 

(mis)interpreted as evidence of causation.  

Scholars have therefore suggested that longitudinal data – where the predictor variable 

was collected at an earlier time point than the outcome variable – are methodologically 

more robust, in terms of temporal causality (Raz & Lindenberger, 2011). Indeed, because 

temporal precedence enabled by longitudinal analyses allows for the testing of the 

direction of the paths between the variables, longitudinal data can offer improved 

insight into the dimensions and dynamics of temporal processes such as cognitive and 

neural ageing. But even a significant mediation in which the variables of interest have 

been collected at different timepoints does not mean that causation can safely be 

inferred. For example, the outcome variable might not change over time, so one would 

get equivalent results if it had been measured at the same time as the predictor variable. 

Therefore, the strongest (or “gold standard”) causal inference enabled by observational 

(rather than interventional) data comes when mediation analysis is performed on 

change scores, i.e., differences in variables across timepoints in longitudinal data. For 

instance, if a change in cortical thickness mediates the relationship between a change 

in physical activity and a change in cognition, then the notion that physical activity 

causes cognitive changes, and that these are partially explained by morphometric 

changes, is more likely (though, as with any statistical modelling, such a result could 

still be the consequence by an unknown, confounding variable that happens to change 

in the same way as the mediator variable).  
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Regardless of the level of statistical control (i.e., whether mediation is performed on 

simultaneous, lagged or change scores), it is also vital for any causal interpretation of 

mediation effects to have a solid theoretical and mechanistic explanation of the 

directionality of an effect. Indeed, for mediation models to address causality, the 

directionality of causation (i.e., X affecting Y in Figure 4-1) needs to not just be plausible, 

but its reverse (Y affecting X) should be implausible.  

A final issue is that the vast majority of neuroimaging studies assessing the relationship 

between physical activity and brain structure (whether through mediations or 

univariate associations) have focused on brain volume (the 2013 review by Voelcker-

Rehage & Niemann, for instance, does not include a single cortical thickness paper). 

Volumetric studies have consistently pointed to effects of higher physical fitness or 

cardiovascular intervention on, for instance, volume in the frontal cortex (Colcombe et 

al., 2006; Ruscheweyh et al., 2011; Weinstein et al., 2012) and the temporal lobe, which 

contains the hippocampus (Erickson et al., 2011; Szabo et al., 2011). I think that it is likely 

that the volumetric effects observed in many of these studies are, in fact, driven by 

cortical thickness (see Chapter 3). Indeed, more recent studies have shown increased 

cortical thickness in more physically active older adults in temporal (Raffin et al., 2021; 

Walhovd et al., 2014; Williams et al., 2017) and frontal brain regions (Lee et al., 2016). In 

other words, a central question addressed in this Chapter is whether an aggregate 

measure like grey-matter volume (in FreeSurfer, the product of cortical thickness and 

surface area) might be conflating separate aspects of the causal exercise-cognition 

chain, and whether these distinct aspects can be detected using mediation analyses.   

4.2.2 Measuring fitness  

One advantage of animal and intervention designs is having an objective measure of 

physical activity: one group exercises, the other does not. Observational studies must 

rely on more indirect proxies of physical activity, which tend to fall into two categories: 

self-report data, on one hand, such as Cam-CAN’s “EPAQ” questionnaire (see 

https://dapa-toolkit.mrc.ac.uk/instrument/40) that asks participants to state how 
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frequently they partake in mild, moderate, or strenuous physical activity. These 

measures are subjective and are prone to inaccurate (usually exaggerated) levels of 

exercise (Prince et al., 2020). Physical measures, on the other hand, can assess a person’s 

fitness more objectively. The most accurate measure of physical fitness is maximal 

oxygen update (VO2max) during exercise. VO2max indicates the maximal capacity of the 

cardiovascular system to provide oxygen to muscle cells during sustained exercise, and 

is usually measured by an incremental test on a motor-driven treadmill or a bicycle 

ergometer (Plasqui & Westerterp, 2005); an expensive and time-consuming task which 

is often not suitable for elderly participants (Huggett et al., 2005). As an alternative to 

VO2max, researchers have relied on a series of non-invasive measures to assess 

cardiovascular health and fitness levels. Heart rate variability (HRV) has relatively 

recently been identified as robust proxy of cardiovascular health and has also shown to 

be related to cognitive performance (Luque-Casado et al., 2013); although HRV has also 

been criticized for its interpretability (Heathers, 2014). The idea is that a heart rate that 

is variable and responsive to demands reflects a healthy cardiovascular system, whereas 

reduced HRV may be associated with poorer cardiovascular health, aerobic fitness levels 

and other negative health outcomes (Routledge et al., 2010).  HRV is best measured with 

an electrocardiogram, but can also be captured using wearable devices such as smart 

watches, opening up promising new research avenues (Goessl et al., 2017; Saif et al., 

2020). If heart rate metrics are not available, as is the case in Oslo’s Lifespan Changes in 

Brain and Cognition (LCBC) cohort, blood pressure can be used as measure of 

cardiovascular health. High blood pressure (hypertension) is one of the strongest 

indicators of poor cardiovascular health (Wu et al., 2015), and can therefore serve as a 

(albeit indirect, see discussion) measure of fitness. Systolic blood pressure especially, 

which measures the force the heart exerts on the walls of the arteries, has been linked 

to cognitive age-related differences and changes (Gottesman et al., 2014; Launer et al., 

1995) as well as to reduced brain volume (Beauchet et al., 2013; Gianaros et al., 2006; 

Muller et al., 2010; Swan et al., 1998) and cortical thickness (Walhovd et al., 2014). 

Furthermore, a relatively large body of research has pointed to associations between 
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blood pressure and measures of white matter (e.g., Fuhrmann et al., 2019) but since the 

focus of this thesis is on grey matter, these studies are beyond the present scope.  

4.2.3 Summary  

The evidence for lifestyle activities positively affecting cognitive performance is mixed. 

The most robust effects have been found for physical activity, where increases in aerobic 

exercise led to (modest to moderate) improvements in cognition. Animal studies 

suggest that this effect is likely due to neurotrophic processes: exercise causes rises in 

brain derived neurotrophic factor (BDNF), which in turn stimulates neurogenesis and 

dendritic arborisation (Nokia et al., 2016). It is likely that MR-derived measures of grey-

matter can partially capture this effect. One particularly insightful avenue for analysing 

this exercise-brain-cognition relationship in observational data is to assess whether 

grey-matter mediates the longitudinal relationship between changes in exercise and 

changes in cognition: More specifically, whether the dissociable aspects of cortical 

thickness and surface area in the previous chapter also represent different mediation 

pathways. 

4.2.4 Present study  

This chapter assesses the mediating role of grey matter in the link between 

cardiovascular health (as indexed by systolic blood pressure) and fluid cognitive 

abilities. Using (equality) constrained mediation models and model comparisons, it 

tests the hypothesis that such a mediation is comprised of two dissociable components, 

which are masked when investigating only the aggregate measure of grey-matter 

volume: while volume should mediate the overall relationship between blood pressure 

and cognition, cortical thickness should capture the “blood pressure-brain” aspect of 

the mediation, while surface area should be related to the “brain-cognition” part of the 

mediation. 
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4.3 Methods and Results  

4.3.1 Cam-CAN Lifestyle Factors  

As described above, the most compelling and mechanistically plausible evidence for a 

brain-mediated lifestyle-cognition effect comes from studies investigating physical 

health and exercise, while the neural mechanisms underlying the potential benefits of 

other aspects of lifestyle (such as intellectual or social engagement) are less well 

understood. It therefore follows that, of the five latent lifestyle factors created in 

Chapter 2, brain structure should best mediate (that is, explain the largest amount of 

variance) of the link between the Physical Health factor and cognition. To test this 

assumption, I ran five mediation models, one per lifestyle factor, to i) assess whether 

grey-mater volume mediates the relative lifestyle-cognition association and ii) to 

calculate (and then compare) the effect size of each mediation by dividing the indirect 

estimate by the estimate for the total effect. Lifestyle, cognitive and morphometric data 

were available for 641 participants (age range 18-88, median age 54). Mediation models 

were estimated in lavaan (Rosseel, 2014). The alpha level was Bonferroni-adjusted 

(0.05/5) at 0.01.  

Lifestyle Factor Total effect (lifestyle – 
fluid intelligence)  

Mediation effect (grey 
matter volume) 

Effect size 
(indirect/total) 

Beta 
(standardized)   

p   Beta 
(standardized)   

p   

Physical Health  -0.536 <0.001 -0.164 <0.001 0.31 

Social 
Engagement  

0.239 <0.001 0.068 0.002 0.28 

Intellectual 
Engagement  

0.361 <0.001 0.10 <0.001 0.28 

Education/SES 

 

0.516 <0.001 0.152 <0.001 0.29 

Mental Health  

 

-0.302 <0.001 -0.069 0.002 0.23 
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Table 4-1: mediation results. Brain volume mediates the lifestyle - fluid intelligence relationship of 
physical health, intellectual engagement, and education/SES 

As shown in Table 1, whole brain grey-matter volume significantly mediated the 

relationship between all five lifestyle factors and fluid intelligence: physical health (β = 

-0.16, p = <0.001), social engagement (β = 0.068, p = 0.02), intellectual engagement (β = 

0.10, p = <0.001), education/SES (β = 0.15, p = <0.001) and mental health (β = -0.069, p = 

0.002). Note that the negative sign for physical health is because of how the physical 

health factor is comprised, with higher scores reflecting worse physical health.  

To compare the size of these mediation effects, I divided the indirect estimate by the 

estimate for the total effect, which provides the percentage of the total effect explained 

by the mediating mechanisms (in this case brain volume; Iacobucci, 2012). Mental 

health had the smallest effect size (0.23), and physical health the largest (0.31), 

suggesting that grey-matter volume explained 23 and 31 percent of the direct effect, 

respectively. Moreover, not only does grey-matter volume exert greatest mediation for 

physical health, but the basic effect being mediated – that between lifestyle and 

cognition – is also greatest in magnitude for physical health (0.536). Note however that 

the five lifestyle factors are correlated (see Chapter 2), so we cannot determine the 

unique contribution of each. 

However, instead of continuing the analyses with the latent factor of physical health, I 

was interested in a physical health measure that would be more readily comparable 

across samples and most closely approximates the biological mechanisms discussed 

above. As noted, the latent factor created in Chapter 2 was comprised from a relatively 

unique set of observed Cam-CAN variables, making replication of this factor in a 

different cohort difficult. Of the four observed variables making up the Physical Health 

lifestyle factor (see Chapter 2), systolic blood pressure was the one available in both 

Cam-CAN and LCBC. As discussed in the Introduction, systolic blood pressure measures 

the force the heart exerts on the walls of the arteries and has been shown to be an 

effective and reliable approximation of cardiovascular health (Fuhrmann et al., 2019; 

Gottesman et al., 2014; Launer et al., 1995).  
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The following sections explore the mediating role of grey matter in the relationship 

between systolic blood pressure and fluid cognitive abilities in four main steps. Step one 

assesses grey-matter volume mediations in both synchronously and asynchronously 

collected (i.e., time-lagged) data in Cam-CAN. Step two (again in Cam-CAN) explores 

cortical thickness and surface area separately, rather than as the aggregate volumetric 

measure.  Step three replicates the previous two steps in a separate cohort, LCBC. Step 

four moves beyond cross-sectional inferences to assess change-change mediation 

models in LCBC, asking whether change in systolic blood pressure predicts change in 

cognitive abilities, and if so whether this association is mediated by a change in brain 

structure.  

4.3.2 Grey Matter Volume Mediation models  

Starting with whole brain grey matter volume in Cam-CAN, this significantly mediated 

the relationship between systolic blood pressure and fluid cognitive abilities (β = -0.18, 

p = 0.001), explaining 39 percent of the variance (indirect effect / total effect: -0.12 / -

0.305 = 0.39). This mediation model is depicted in Figure 4-2.  

 

Figure 4-2: grey-matter volume significantly mediates the relationship between systolic blood pressure 
and fluid cognitive abilities in Cam-CAN (N=541). Shows standardized betas (as well as un-standardized 
parameters for the c/c’ path in italics). Here, all data were collected at the same time (T1).   

Because mediation models of cross-sectional data represent age-related differences in 

target variables, they may not capture time-dependent relations (see Raz & 

Lindenberger, 2011 and Introduction above). To shed light on the dynamics of cognitive 

and morphometric ageing, longitudinal data are necessary. As discussed in the 
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introduction, the gold standard are change-change models (see LCBC section below), 

but data collected at different time points are still advantageous (that is, they make the 

possibility of a causal inference more likely) than data collected at the same time. Thus, 

I next ran the above mediation model in the longitudinal Cam-CAN data (N = 99; cases 

using FIML: N=552), where cognitive abilities and grey-matter volume data were 

obtained after systolic blood pressure measures (on average 1.3 years (sd = 0.66 years) 

later). As shown in Figure 4-3, grey-matter volume at timepoint 2 significantly mediated 

the relationship between blood pressure at timepoint 1 and fluid cognition and 

timepoint 2 (indirect effect a*b = ~0.109), explaining 32 percent of the variance (indirect 

effect / total effect: -0.109/ -0.34 = 0.32). Thus, this time-lagged model provides 

temporally unambiguous evidence of a mediating role of grey-matter volume in the link 

between systolic blood pressure and fluid cognition.  

 

Figure 4-3: grey-matter volume significantly mediates the relationship between systolic blood pressure 
and fluid cognitive abilities in Cam-CAN (N=99). Shows standardized betas (as well as un-standardized 
parameters for the c/c’ path in italics). Here, brain and cognitive data were collected after blood 
pressure measures (T2 vs. T1).  

 

4.3.3 Cortical thickness and surface area make dissociable 

contributions to the mediation model  

The above analyses investigated the role of grey-matter volume in mediating the 

relationship between cardiovascular health and fluid cognitive abilities. As shown in the 

Introduction, while most neuroimaging papers assessing the relationship between 
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physical activity and cognition have focused on volume, it is likely that it is cortical 

thickness – not surface area and cortical thickness, i.e., volume – that is most directly 

affected by (changes in) physical health or fitness. I argue that this is because the 

biological mechanisms underlying exercise-induced cognitive improvements entail 

neural and dendritic changes, which cortical thickness (not surface area) might partially 

capture. I therefore hypothesized the following pattern (depicted in Figure 4-4):  

• Hypothesis 1: The cardiovascular health - brain aspect of the mediation model 

should be driven largely by cortical thickness, and not surface area: the association 

between thickness and systolic blood pressure should be stronger than that between 

surface area and systolic blood pressure. 

• Hypothesis 2: Surface area should drive the brain-cognition aspect of the mediation 

model: the association between surface area and fluid cognitive abilities should be 

stronger than that between cortical thickness and fluid cognitive abilities. 

 

 

Figure 4-4: Hypothesized pattern of how surface area and cortical thickness could be differentially 
mediating the blood pressure - cognition relationship. Thick lines reflect hypothesized stronger effects; 
dashed lines reflect hypothesized weaker effects. 

Testing these hypotheses with the methodology adopted here allows this chapter to 

overcome three important weaknesses of previous studies. Firstly (and perhaps most 

importantly), mediation models using grey-matter volume do not have a biological or 
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mechanistic explanatory base because they conflate two separate aspects of morphology 

into one aggregate measure, which may lead to “artificial” mediations. Conversely, 

separating cortical thickness and surface area in the mediation models provides an 

informative and innovative way to shed light onto mechanistically plausible dynamics 

of the lifestyle-brain-cognition triangle. Secondly, mediation studies often rely on cross-

sectional data, making the possibility of causal inference more difficult. Here, cross-

sectional mediation findings are followed up with time-lagged and longitudinal 

analyses. Thirdly, using two large, independent samples increases statistical power and 

improves the robustness of the results.  

To better compare parameter estimates, cortical thickness and surface area were 

rescaled prior to the mediation analyses which, in turn, were estimated in lavaan 

(Rosseel, 2014) in in R-Studio 1.1.463 (R version 3.6.3). Note that for all subsequent 

mediation models in this chapter that include two brain metrics (i.e., cortical thickness 

and surface area), I did not add a residual covariance between the two simultaneously 

estimated metrics (that is, I did not allow surface area and cortical thickness to covary). 

This is because surface area and cortical thickness tend to be uncorrelated in ageing 

samples (see Chapter 2). Further inspection showed that this simplification as tenable: 

allowing co-variance did not significantly improve model fit (Cam-CAN χ2 difference = 

0.0024, p = 0.96; LCBC χ2 difference = 0.0071, p = 0.87).  

I first conducted a multiple mediation analysis, which included surface area and cortical 

thickness as mediators. Because all paths were estimated freely, this model is called the 

‘free model’. Figure 4-5 shows the standardized betas, while the mediation model results 

are summarized in Table 4-2. Here, systolic blood pressure at baseline (T1) was 

significantly associated with cortical thickness at T2 (β. = -0.23, p = 0.01), but not with 

surface area (β = -0.22, p = 0.21). On the other hand, both cortical thickness (β = 0.25, p 

= 0.008) and surface area (β = 0.37, p = <0.001) were significantly associated with fluid 

cognition at T2. Thus, at first glance, this free model offers support for hypothesis 1 

(blood-pressure/brain) but not hypothesis 2 (brain/cognition).  
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Figure 4-5: Regression paths of the free model with raw cognition in Cam-CAN (Model A). Dashed lines 
refer to non-significant paths, solid lines reflect significant paths. N=99. 

However, as shown in the previous chapter, the correlation between cortical thickness 

and fluid cognition was stronger than that between surface area and fluid cognition – 

this effect only reversed after age-residualizing the cognitive abilities. Thus, I ran a 

second free model with age-residualized fluid abilities.  

 

Figure 4-6: Regression paths of the free model with age-residualized cognition in Cam-CAN (Model A). 
Dashed lines refer to non-significant paths, solid lines reflect significant paths. N=99. 

As shown in Figure 4-6, the cardiovascular health – brain pattern mirrored that of the 

previous free model (significant brain-blood pressure associations for thickness, not for 

area), while the brain-cognition pattern differed: here, surface area was significantly 
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associated with age-residualized fluid abilities (β = 0.25, p < 0.001), while thickness was 

not (β = -0.30, p = 0.63). Note, however, that in Cam-CAN (unlike LCBC, see below), the 

original association between blood pressure and age-residualized cognitive abilities was 

not significant (β = 0.061, p = 0.34), i.e., there is no effect to-be-mediated in the first 

place, which limits the conclusions that can be drawn once cognition is residualized 

with respect to age in the Cam-CAN data. 

4.3.3.1  Formal hypothesis testing: equality constrained and zeroed models 

Inspecting the regression paths of the free model offers an interesting conceptual – 

though not formal – understanding of the mediation patterns (at least when cognition 

was unadjusted for age). To formally test the above hypotheses, I ran a series of equality-

constrained mediation models, both for raw and age-residualized cognition. This 

approach allowed me to compare the free models to models in which one or more of 

the paths defining the indirect and direct effects (e.g., paths a1 and a2) are constrained 

to be equal. If the constrained model fits significantly worse than the free model, this 

suggests that there is, in fact, a difference in the magnitude of the path coefficients. In 

other words, if free models are preferred, despite their greater degrees of freedom (dfs), 

this would suggest that area and thickness differ in their role in mediating the 

cardiovascular health – cognition relationship.  

After constraining the BP-brain paths (paths a1 and a2; Model B) and the brain-

cognition paths (paths b1 and b2; Model C), I compared these two constrained models 

to the free model (Model A) using likelihood ratio tests. Model comparison results are 

depicted in Table 4.2. Here, Model A fit better than Model B, but not than Model C.  

This suggests that for the BP-brain paths (a-paths), cortical thickness accounts for 

significantly more of the mediating variance, but that area and thickness do not differ 

in their brain-cognition (b-paths). This is in line with first model depicted in Figure 4-

5. I repeated the same steps for the age-residualized cognition models, comparing 

constrained BP-brain paths (Model E) and constrained brain-cognition paths (Model F) 

to the free model (Model D). Here, the free model fit the data best, suggesting that 
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cortical thickness and surface area did contribute differentially to the mediating effect 

of brain structure in the relationship between systolic blood pressure and cognitive 

abilities, once effects of age are removed from the latter. This, again, is in line with the 

model depicted in Figure 4-6.  

These equality-constrained analyses show that for age-residualized abilities, cortical 

thickness and surface area differentially mediate the association between blood pressure 

and cognitive abilities, respectively. For raw (not age-adjusted) cognitive abilities, the 

a-paths differed significantly, while the b-paths did not. This suggests that the overall 

GM volume mediation shown earlier (and in several published papers) is likely 

comprised of two separate and dissociable components, which remain masked when 

assessing GM volume alone. 

Model DF AIC BIC Chi-
Square 

p 
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n  A Free 1 1811.0 1858.3 3.79  

B BP-brain (a1 & a2) 
paths constrained 

2 1813.4 1856.6 8.18 0.036 

C Brain-cognition 
(b1 & b2) paths 
constrained 

2 1809.3 1852.4 4.01 0.64 
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 D Free 1 2842.1 2889.6 4.08  

E BP-brain (a1 & a2) 
paths constrained 

2 2843.7 2886.9 7.72 0.046  

F Brain-cognition 
(b1 & b2) paths 
constrained 

2 2849.6 2892.8 9.53 0.0020 

Table 4-2: Likelihood ratio test results comparing free and constrained models in Cam-CAN.  

 

A final question was whether thickness and area just play different roles in the mediation 

of cardiovascular health and cognitive abilities, or if the ‘weaker’ paths do, in fact, play 

no significant role at all (see Figure 4-7 for schematic representation). To assess this, I 

investigated whether constraining the weaker paths to zero would impair model fit 

when comparing the zeroed models to the free models. If the zeroed models are 
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preferred, the weaker paths of the mediation models are negligible. Conversely, if the 

free models are preferred, this suggests that the weaker paths (although weaker) still 

contribute significantly to the mediating effect. Model comparison results are 

summarized in Table 4-3.  

 

Figure 4-7: a schematic representation of zeroed paths improving model fit, suggesting that the weaker 
components of the blood pressure - brain and the brain - cognition paths are statistically negligible. 
This pattern was evident only in LCBC, not Cam-CAN (where the weaker paths were not statistically 
negligible).  

For both raw fluid cognition and age-residualized cognition, the free models were 

preferred, suggesting that the weaker paths did statistically contribute to the mediating 

effect, and were therefore not negligible.  

 

Model  DF AIC BIC Chi-
Square  

p 

Fluid cognition  Free 1 1811.0 1858.5 3.79 0.0027 

Zeroed  3 1818.9 1857.7 15.64  

Age-residualized 
fluid cognition  

Free 1 2842.1 2889.6 4.08 0.047 

Zeroed  3 2844.2 2883.0 6.12  
Table 4-3: Model fit comparison between free and zeroed models in Cam-CAN. The preferred models 
are bolded.  
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4.3.4 LCBC 

After running the above mediation models in Cam-CAN, I turned to the LCBC data 

(described in Chapter 2) for two reasons: first, I wanted to investigate whether my 

findings would replicate in a larger (N=835) longitudinal dataset. Second, because LCBC 

(unlike Cam-CAN) has change scores of systolic blood pressure, morphometry, and 

cognition, I was interested in exploring change-change mediation models which, as 

explained in the Introduction, would offer the best possible evidence of causality in 

observational data.   

4.3.4.1 Replication of Cam-CAN mediation models  

I replicated the previous four mediation analyses with the LCBC data, i.e., using BP at 

T1, and GM and Cognition at T2. Overall, all analyses replicated well, offering further 

support for the hypothesis that cortical thickness and surface area play differentiable 

roles in mediating the relationship between blood pressure and cognitive abilities. First, 

grey-matter volume mediated the relationship between systolic blood pressure at 

baseline (T1) and fluid cognitive abilities at T2 (on average, 5.18 years (sd = 2.59 years) 

after the baseline assessment;  β. = -0.083, p = 0.001), explaining 35 percent of the 

variance (indirect effect / total effect: -0.083 / -0.24 = 0.345; (Iacobucci, 2012).  Second, 

the regression paths of the multiple mediation analyses (which included surface area 

and cortical thickness as mediators) generally mirrored the Cam-CAN ones: The a-paths 

differed for both raw and age-residualized cognition (that is, systolic blood pressure at 

baseline was significantly associated with cortical thickness at time point 2, but not with 

surface area). Conversely, the b-paths differed only in the age-residualized models, not 

in the raw cognition models. An important difference between the LCBC and the Cam-

CAN models was that for LCBC, blood pressure was significantly associated with age-

residualized cognition, suggesting that there was a to-be-mediated effect. These results 

are summarized in Table 4-4 and Figure 4-8.  
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Figure 4-8: Free models in LCBC (N=835). Top: fluid cognitive abilities, bottom: age-residualized 
cognitive abilities. For age-residualized cognition, cortical thickness and surface area contribute 
differently to the mediating effect. Dashed lines reflect non-significant effects. 

Third, equality constraining the a- and b-paths (to formally test whether cortical 

thickness and surface area make different contributions to the mediating model as 

outlined in the hypotheses above) showed that for both raw and age-residualized fluid 

cognition, the free models were preferred, suggesting that surface area and cortical 

thickness do, indeed, make differentiable contributions to the relationship between 

blood pressure and cognitive abilities (see Table 4-4). Note that these findings differed 
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slightly from the Cam-CAN results, where the free model was only preferred for age-

residualized cognition.   

 

Model DF AIC BIC Chi-
Square 

p 
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A Free 1 2178.6 2230.6 2.86  

B BP-brain (a) paths 
constrained 

2 2188.1 2235.3 14.31 0.00072 

C Brain-cognition (b) 
paths constrained 

2 2185.1 2232.3 11.29 0.0037 
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D Free 1 3494.9 3546.9 2.62  

E BP-brain (a) paths 
constrained 

2 3518.7 3566.0 28.45 0.00037 

F Brain-cognition (b) 
paths constrained 

2 3498.2 3448.1 3.87 0.034 

Table 4-4: Likelihood ratio test results comparing free and constrained models in LCBC. For both fluid 
intelligence and age-residualized fluid intelligence, free models fit the data better, suggesting that area 
and thickness play a differential role in mediating the lifestyle-cognition relationship. 

Fourth, when comparing models where the weaker a- and b- paths were zeroed, free 

models fit better for the raw cognition models (χ2 difference = 55.96, p = <0.0001). For 

the age-residualized models, the zeroed models were preferred (χ2 difference = 4.31, p = 

0.12). This suggests that for age-residualized cognition (though not the raw cognitive 

models), the weaker paths can be considered statistically negligible (Table 4-5). This 

was different in Cam-CAN, where the free models were preferred for both raw and age-

residualized cognition.  

Model  DF AIC BIC Chi-

Square  

P 

Fluid cognition  Free 1 2178.6.1 2230.6 2.87  

Zeroed  3 2227.7 2270.2 55.96 <0.0001 

Free 1 3494.9 3546.9 2.62  
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Age-residualized 

fluid cognition  

Zeroed  3 3495.2 3537.7 6.93 0.12 

Table 4-5: Model fit comparison between free and zeroed models in LCBC 

 

4.3.4.2 Change-change mediation models  

After finding that the core mediation results replicated well across the two cohorts, I 

next investigated whether changes in systolic blood pressure predicted slower cognitive 

decline and if so, if changes in brain structure might mediate this effect. Here, the 

mediation models included blood pressure, brain structure and cognitive annualized 

change scores (rather than baseline blood pressure and brain and cognitive data from 

time point 2).  

In this ‘gold standard’ model (which included three change scores: blood pressure, 

cognitive and morphometric; Figure 4-9), changes in blood pressure did not 

significantly predict changes in fluid cognition (β = -0.235, p = 0.189), so there was no 

to-be-mediated effect. However, only 38 participants had all three change scores (N=124 

were included in the model using FIML); it is therefore possible that the lack of 

significant association is due to insufficient statistical power. 

 

Figure 4-9: The "gold standard" model in LCBC (N=124 with FIML), which assessed changes in all three 
variables. No association between changes in blood pressure and changes in fluid cognition, suggests 
that there is no to-be-mediated effect. Dashed lines represent non-significant paths. The numbers in 
parenthesis reflect raw parameters, SE = standard error.  
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In the next step, I therefore relaxed requirements to only include two change scores 

(blood pressure and grey-matter volume; this increased the sample size to N=71; N=166 

using FIML) and modelled i) whether changes in blood pressure would predict fluid 

cognition at time point 2 and ii) whether blood pressure at baseline was associated with 

changes in cognition (and whether, if either of these effects were found, they are 

mediated by morphometric changes). These models are depicted in Figures 4-10 and 4-

11, respectively.  

 

Figure 4-10: In LCBC (N = 166 using FIML), changes in systolic blood pressure predict fluid cognition at 
time point 2, an effect partially mediated by changes in grey-matter volume. Dashed lines represent 
non-significant paths. The numbers in parenthesis reflect raw parameters, SE = standard error.  

For the first of these two models (Figure 4-10), changes in systolic blood pressure were 

significantly associated with fluid cognition at time point 2 (β = 0.22, p = 0.018). The 

mediation effect was also significant (β = 0.21, p = 0.034). Because there was a significant 

association between changes in systolic blood pressure and changes in grey-matter 

volume (β = 0.032, p = 0.033), but not between changes in grey-matter volume and fluid 

cognition and time point 2 (β  = 0.016, p = 0.905), it is difficult to interpret this result. 

Moreover, sample size here was still relatively small (N=71), so this pattern should be 

investigated further in subsequent research.  

Model ii) had a larger sample size (N=267), but baseline systolic blood pressure was not 

significantly associated with changes in cognition (β = -0.055, p = 0.37), which meant 

that there was no to-be-mediated effect (Figure 4-11).  
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Figure 4-11:  In LCBC (N=267), systolic blood pressure at baseline was not significantly associated with 
changes in fluid cognition. Dashed lines represent non-significant paths. 

In summary, there was only relatively weak evidence of any change-change associations, 

with all but one analysis pointing to null effects. While changes in blood pressure were 

significantly related to fluid abilities at time point 2 (Figure 4-10), because the sample 

size was small (N=71) and thus likely underpowered, I decided not to conduct further 

analyses with this model. I therefore did not test the hypotheses that cortical thickness 

and surface area contribute differently to this mediating effect in any models involving 

change scores. This means that, in this thesis, all evidence for a differentiable 

contribution of thickness and area in mediating the relationship between blood 

pressure and cognitive abilities comes from time-lagged cross-sectional data (see 

discussion).  

4.4 Discussion 

In this chapter, I explored how grey matter mediates the relationship between lifestyle 

– particularly cardiovascular health as indexed by systolic blood pressure – and cognitive 

abilities. In two large-scale, independent datasets, I show that i) whole brain grey-

matter volume mediates the relationship between blood pressure and cognition overall 

and that ii) this grey-matter mediation is comprised of two separate, differentiable 

effects, whereby cortical thickness drives the blood pressure – brain component (a-path) 

and surface area mediates the brain-cognition component (b-path) of the mediation 

model. These findings elucidate the relationship between physical health and cognition 
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in three important ways: First, separating cortical thickness and surface area in the 

mediation models provides an informative and innovative way to shed light onto 

mechanistically plausible dynamics of the lifestyle-brain-cognition triangle. Second, 

mediation studies often rely on cross-sectional data, making the possibility of causal 

inference more difficult. Here, cross-sectional mediation findings are followed up with 

time-lagged and longitudinal analyses. Third, using two large, independent samples 

increases statistical power and improves the robustness of the results.  

Below I will discuss these findings in the context of the existing literature and ask what 

they do and do not tell us about the possibility that MR-derived brain structure captures 

a potentially causal relationship between cardiovascular health and cognitive abilities.  

4.4.1 Summary of findings  

I first showed that grey matter volume mediated the relationship between the five Cam-

CAN lifestyle factors created in Chapter 1 (physical health, mental health, social 

engagement, intellectual engagement, and education/SES) and cognitive abilities. The 

largest mediation effect was found for the association between the Physical Health 

factor and cognition. Note, however, that the lifestyle factors are correlated (see Chapter 

1), so we cannot determine the unique contribution of each. Furthermore, because these 

analyses were conducted using cross-sectional data (that is, all variables were collected 

at the same time), not much can be inferred regarding the direction of causality. Finally, 

because these latent lifestyle factors were comprised of a relatively unique set of 

observed variables, they were not readily replicable across cohorts.  

Systolic blood pressure, on the other hand, was available in both Cam-CAN (where it 

was one of the observed variables of the Physical health latent factor) and LCBC. It was 

therefore chosen as proxy for cardio-vascular health. Both cohorts presented the same 

general and interesting mediation pattern: while grey-matter volume mediated the 

relationship between systolic blood pressure and fluid cognitive abilities, this single 

mediating effect consisted of two separate components. Equality-constrained models 
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revealed that cortical thickness contributed more to the blood pressure – brain (a paths) 

aspect of the mediation models while surface area contributed more to the brain-

cognition (b paths) aspect of the models. Note, however, that this was only true for age-

residualized fluid abilities in both cohorts. Moreover, zeroing the weaker paths revealed 

that for age-residualized cognition, the weaker paths were not just weaker but 

statistically negligible in LCBC; i.e., there was no evidence for a role of cortical thickness 

in the brain-cognition aspect of the mediation model, nor a role of surface area in the 

blood-pressure brain aspect of the model. Note that this was not the case for the raw 

cognitive ability models in either sample – here the weaker paths were still of statistical 

significance.   

4.4.2 Present findings in the context of other studies 

Other mediation studies support the above grey-matter volume findings, pointing to a 

mediating role of grey-matter volume in the association between physical health and 

cognition (Makizako et al., 2015; Verstynen et al., 2012; Weinstein et al., 2012). There are, 

to my knowledge, no studies assessing the mediating role of cortical thickness and/or 

surface area in the cardio-vascular health / cognition association. This Chapter’s finding 

that cortical thickness drives the blood pressure – brain component of the mediation 

model is indirectly supported by a handful of studies that have pointed to associations 

between cardiovascular health and cortical thickness: A small-sample (N=30) study, 

which does not report a formal mediation analysis, found that a 12-week moderate 

intensity walking intervention improved fitness in older adults, which in turn, was 

correlated with cortical thickness change bilateral insula, precentral gyri, precuneus, 

posterior cingulate, and inferior and superior frontal cortices – regions that are 

vulnerable to Alzheimer’s related atrophy (Reiter et al., 2015). A second (small-sample) 

study found associations of cardiorespiratory fitness (measured using VO2max) with 

cortical thickness  in several cortical areas, with the strongest effect noted in the left 

supramarginal cortex (Williams et al., 2017). Finally, a recent pooled analysis of N=1218 

participants showed significant correlations between Heart Rate Variability and cortical 
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thickness, particularly in the orbitofrontal cortex (Koenig et al., 2021). It is striking that 

none of these studies report cognitive data, since one might expect the success of any 

fitness intervention to be determined by whether cognition improves. One possibility is 

that the authors did not find any associations between cortical thickness and cognition 

(which, according to this thesis, is to be expected) and therefore did not report these 

analyses.  

Regarding the surface area-cognition component of the mediation model, the existing 

evidence is even more scarce than that for the thickness associations. I could not find a 

single study investigating surface area and physical health in older adults, whether as a 

mediation analysis or otherwise. A study of obese children (N=101) found that cardio-

vascular fitness was associated with cortical thickness but not surface area (Esteban-

Cornejo et al., 2019). However, because thickness and area are known to play different 

roles in children than in adults, these findings are only of limited comparative value to 

the present results. Apart from studies assessing fitness, the link between surface area 

and cognition in (older) adults is slowly becoming increasingly accepted (see Chapter 

2) – a development further supported by the present findings.  

4.4.3 Limitations 

Although this study has several strengths (including the large cohorts, the successful 

replication of the main findings, time-lagged mediation models and the inclusion of 

change-change analyses), there are also several limitations. Firstly, the quality and 

usefulness of the systolic blood pressure measure as an index of cardiovascular health. 

Although systolic blood pressure has been used in other studies to reflect cardiovascular 

health (see Introduction, and e.g., Gottesman et al., 2014) other metrics (such as Heart 

Rate Variability; Luque-Casado et al., 2013) are arguably better-suited to capture 

physical health. I chose blood pressure here because of its availability in both datasets. 

Since HRV might be a more sensitive measure of fitness, it would have been interesting 

to see how particularly the change-change models would have fared using this metric.  
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Another limitation is that many inferences are based on time-lagged cross-sectional, 

rather than on change-change mediations. Had changes in blood pressure predicted 

changes in cognition, and had this relationship been mediated by changes in grey 

matter, I could have been more confident in making causal inferences. The null effects 

reported here could be due to the small sample (N=38) of participants for whom all 

three change scores were available, or because too little time passed between the 

measurements to be able to detect meaningful changes in blood pressure, 

morphometry, or cognition. The null effects could, of course, also reflect a true null 

finding, where there is no causal relationship between cardiovascular health, at least as 

indexed by blood pressure and cognitive abilities. The absence of change-change effects 

makes the interpretation of the time-lagged cross-sectional mediation models less 

definitive. Finally, the arguably largest limitation of the present analyses is that it used 

only observational data. As discussed in the General Introduction, the best evidence for 

causal effects come from intervention studies, such as Randomized Controlled Trials.  

4.4.4 Biological mechanisms  

Assuming that a causal relationship between cardiovascular health and cognitive 

abilities is plausible, what biological mechanisms might underlie the mediation pattern 

found in this chapter? As outlined in the Introduction, one of the physiological 

responses to exercise in humans is an increase in BDNF (Ruscheweyh et al., 2011), which 

has been shown to mediate the relationship between exercise and increased 

hippocampal volume (Colcombe et al., 2006; Erickson et al., 2011) and is associated with 

greater neural connectivity (Voss et al., 2013). These neurotrophic effects have been 

hypothesized to contribute to the benefits of exercise on memory performance and 

induce angiogenesis (development of new blood vessels) in downstream regions such 

as the motor cortex  (Pereira et al., 2007; Swain et al., 2003). It is therefore plausible that 

the relationship between cortical thickness and blood pressure found in this chapter 

reflects (at least in part) cardiovascular health-induced synaptogenesis or dendritic 

arborization, and that MR-derived cortical thickness therefore picks up on these 
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biological mechanisms. Note that any BDFN-related effects are unlikely to be the only 

mechanism underlying the exercise-cognition relationship, but that other processes are 

also at play (see for example Wenger et al., 2017). 

The main puzzle in the present findings is arguably not about the mechanisms 

underlying the a-paths (although speculative here, they are well supported by animal 

and human research), but about the b-paths: if cardiovascular health affects cortical 

thickness, but cortical thickness does not impact cognitive abilities, then what does that 

say about the relationship between cardiovascular health and cognition? One possibility 

is that that exercise-affected cortical thickness does, in fact, impact cognitive abilities 

but that this effect is smaller than the general, exercise-independent relationship 

between surface area and cognition detailed in Chapter 2. In other words, exercise-

dependent changes in cortical thickness might result in small cognitive improvements, 

but the majority of the cognitive variance is still explained by surface area. As explained 

in Chapter 2, the relationship between surface area and cognition could (in part) be due 

to certain types of glial cells migrating towards the pial surface during development, 

thereby expanding the cortex, and that this process is, in turn, responsible for many of 

the cognitive features unique to primates (Nowakowski et al., 2016; Rakic, 2000). This 

idea is summarized in Figure 4-12. 
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Figure 4-12: Hypothesized mechanisms that could partially explain the relationship between 
cardiovascular health and fluid cognition, and which can be detected using MR-derived brain structure 
metrics. Here, exercise increases cortical thickness via synaptogenesis and/or dendritic arborization (1). 
This, in turn, improves cognition (2), but this effect explains less of the cognitive variance than what is 
captured by surface area independently of exercise (3). Surface area explaining more of the cognitive 
variance is the reason why the b1) path (surface area – cognition) is stronger than the b2) (thickness – 
cognition) path in the mediation model. 

Of course, any biological interpretation of the mediation models in these data is purely 

speculative. However, I would argue that the models presented here, coupled with 

plausible biological explanations, show how human morphology can be used in an 

informative and innovative way to shed light onto the dimensions and dynamics of the 

lifestyle-brain-cognition triangle. As I will discuss in Chapter 5, interdisciplinary and 

integrative work will be needed to find answers to the questions that the rapidly-ageing 

world is waiting for: might living an active life – one enriched by social, intellectual, and 

physical activities – really mean that we can be cognitively healthier for longer?  
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4.5 Conclusion  

Grey matter mediates the relationship between lifestyle engagement and cognitive 

abilities. The physical health (as indexed by blood pressure) – cognition association, 

while at first sight mediated by whole-brain grey matter volume, is comprised of a 

dissociable mediation pattern: cortical thickness contributed more to the blood 

pressure-brain part of the mediating model, while surface area contributed more to the 

brain-cognition part of the mediating model. This provides further evidence for the 

importance to assess surface area and cortical thickness separately and shows how 

morphology can be used in an informative and innovative way to shed light onto the 

dimensions and dynamics of the lifestyle-brain-cognition triangle.  
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Chapter 5: General Discussion  

5.1 Chapter summary  

Below I summarize this thesis’ main findings, as well as its strengths and limitations. 

Informed by my personal interest and experience in policy, I then discuss how scientific 

evidence is usually translated into policy as well as the role observational studies and 

mechanistic science have in this endeavour. Finally, I summarize current policy 

recommendations regarding modifiable lifestyle activities and cognitive ageing and 

discuss the extent to which this thesis contributes to future recommendations.   

5.2  Summary of findings  

In three empirical chapters, this thesis explored the relationships between lifestyle, 

cognitive abilities, and brain structure. Chapter 2 set out to demonstrate a way to model 

and assess the complex heterogeneity of people’s lives and how it relates to fluid and 

crystallized cognitive abilities. To tackle the rich, observational dataset that is Cam-

CAN, I first used Exploratory Structural Equation Modelling (ESEM, a data-driven 

technique to categorize a large amount of questionnaire-derived lifestyle variables into 

five factors: education/SES, physical health, mental health, intellectual engagement, 

and social engagement. Separate regressions showed that each of these factors was 

significantly associated with cognitive abilities. Because few studies had assessed 

different lifestyle aspects’ joint relationship with cognition, the multiple regression 

models set out to capture the complementary role of multiple lifestyle components 

simultaneously – what effect does, say, social engagement have above and beyond 

education/SES and the other lifestyle factors? When all lifestyle factors were 

incorporated into the same model, social and intellectual engagement as well as 

physical health made independent contributions to fluid and crystallized age-adjusted 



158 General Discussion 

 

abilities, above and beyond the effect of education/SES. These relationships were robust 

across age and sex, and highly similar for fluid and crystallized domains, suggesting 

general effects, rather than effects specific to cognitive domain. Because, social, 

physical, and intellectual activities are potentially modifiable, this chapter offers 

observational, cross-sectional support in favour a beneficial relationship between 

lifestyle and cognitive ageing.  

Chapter 3 focuses on brain structure. First, after deriving eight neuroimaging metrics 

from the Cam-CAN data (grey-matter volume, cortical thickness, Thickinthehead (an 

improved measure of cortical thickness), surface area, curvature, sulcal depth, fractal 

dimensionality, and total grey matter), I investigated these measures’ cross-sectional 

associations with age and fluid cognitive abilities. This showed that combining shape 

measures outperforms any individual metrics’ ability to capture age-related and 

cognitive differences, highlighting the potential usefulness in assessing various 

morphological shape measures when investigating the ageing mind and brain. Next, 

focusing on cross-sectional and longitudinal measures of surface area and cortical 

thickness (which together make up grey matter volume) in Cam-CAN and LCBC, I 

showed how these two separate aspects of morphology are differentially associated with 

age and cognition: while cortical thickness captured age well, it did not relate strongly 

to cognitive change (longitudinally) or age-residualized fluid abilities (cross-

sectionally). Surface area, on the other hand, had relatively week associations with age, 

but related strongly to cognitive change and abilities.  

Finally, Chapter 4 investigated the mediating role of grey matter in the relationship 

between potentially modifiable lifestyle activities and cognitive abilities. I showed, 

firstly, that grey matter mediates the association between Chapter 1’s five lifestyle factors 

and fluid cognition. The strongest mediation effects were found for physical health, a 

relationship which is also well supported by other observational, interventional, and 

animal studies.  Zooming in on physical health, as indexed by systolic blood pressure, I 

showed that (in Cam-CAN and LCBC) the grey-matter volume mediation was 

comprised of two dissociable components. Cortical thickness related more strongly to 
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the a-paths of the mediation model (the associations between blood pressure on 

morphology), while surface area related more strongly to the b-paths (the associations 

between morphology and cognitive abilities).  

5.3 Strengths and limitations  

This thesis’ main strengths stem from its data. First, both the Cam-CAN and the LCBC 

cohort are large, age-heterogenous samples allowing for well-powered statistical 

analyses. As discussed in the General Introduction (Chapter 1), cognitive neuroscience 

has been negatively impacted by low-powered studies, which were part of the cause of 

the replicability crisis (Open Science Collaboration, 2015). Because high statistical 

power increases the chance of detecting a true effect, while also reducing the likelihood 

that a statistically significant result reflects a false effect (Button et al., 2013), the results 

in this thesis are likely robust. The robustness of the results is further improved because 

the thesis’ core results in Chapter 3 (the morphometric double dissociation, whereby 

thickness relates to ageing and surface area relates to cognition) and Chapter 4 (the 

mediating role of surface area and cortical thickness in the relationship between systolic 

blood pressure and cognitive abilities) successfully replicated in an independent 

sample. Results replicated despite important differences in the datasets, such as a 

shorter time interval between the two waves in Cam-CAN compared to LCBC, and 

different measures of fluid cognitive abilities. Next, the morphometric phenotypes 

explored here are of note: I assessed eight brain structure measures calculated from 

multiple imaging pipelines. Investigating more than the canonical neuroimaging 

metrics of volume and cortical thickness allowed me to describe a previously largely 

overlooked phenomenon, the double dissociation discussed in Chapter 3, which I argue 

was overlooked precisely because of the field’s focus on a relatively small set of 

morphometric tools.  

The data studied here also come with limitations. Most importantly, the participants I 

investigated are adults from high-income, well-educated nations with good access to 
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health care (in fact, England’s Cambridge, and Norway’s Oslo are particularly well-off 

cities). These populations have been described as WEIRD: western, educated, 

industrialized, rich and democratic (Henrich et al., 2010a). The trouble, as 

anthropologist Joseph Henrich puts it: most people are not WEIRD (Henrich et al., 2010; 

although see Ghai, 2021). An increasing body of research suggests that many cognitive 

and behavioural traits thought to be universal apply predominately to the small western 

minority they were first detected in: amongst other things, people from different 

cultures differ in how they solve problems, raise their children, treat their elders, in how 

much risk they take and in what they eat and drink (see Diamond, 2013 for a 

comprehensive discussion). For instance, most people in western nations grow up 

speaking only one language, while bilingualism is the norm in many non-Western 

countries. Bilingualism has been consistently associated with enhanced cognitive 

functioning, with the largest effect sizes demonstrated for abstract thinking, attention, 

and problem solving (Adesope et al., 2010). Crucially for this thesis – and the 

generalizability of its findings – non-WEIRD people also seem to age differently. 

Although some age-related decline in cognition seem to be universal (e.g., Gurven et 

al., 2017), scholars have argued that cultural differences can affect both the rate of 

decline as well as its consequences for the affected individual (Fung, 2013). For example, 

people from collectivist nations report less loneliness with age, and feel more socially 

engaged in their communities (Barreto et al., 2021). Given that social engagement might 

affect cognitive ageing (e.g., Karp et al., 2006), it is possible that this form of social 

integration might (to some extent) attenuate the effects of cognitive decline. Thus, to 

better understand how cultural differences affect and interact with cognitive ageing, it 

is important for shared datasets to not only become larger, but also more diverse. In the 

meantime, this thesis’ results generalise only to WEIRD populations, and (especially 

Chapter 2) should be interpreted with the appropriate caution on generalisability. 

Another limitation of the data is that they are purely observational, making causal 

inference less straightforward. I discussed the importance of experimental science 

including RCTs in Chapters 1 and 4 and will re-visit this issue in Section 5.4 below.  
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A second set of strengths and limitations stem from the analysis tools employed in this 

thesis. First, the data-driven grouping of lifestyle factors and the subsequent multiple 

regression models in Chapter 2 provide a methodically sound example of how to analyse 

large, observational datasets while minimizing researcher bias (for example in variable 

selection) and reflecting complex interactions between multiple simultaneously present 

variables. Second, the latent variable models, which capture the relationship between 

peoples’ lifestyle and cognitive performance, account for measurement error, assess 

reliability and validity, and have greater generalizability and statistical power than 

methods based on observed variables (Jacobucci et al., 2019). Third, the analysis of 

longitudinal data using Latent Change Score Models, which allowed me to assess how 

morphometric and cognitive changes relate to each other, is of note. Only a small 

number of studies to date have adopted a similar approach (Hogstrom et al., 2013; 

Storsve et al., 2014; Y. Wang et al., 2019), and none have investigated the longitudinal 

relationship between surface area and cognition. Finally, the mediation models in 

Chapter 4, which explore the differential role of surface area and cortical thickness in 

mediating the relationship between blood pressure and cognitive abilities, provide (to 

my knowledge) a new, innovative way of testing MR-detectable mechanistic hypotheses 

underlying the association between physical and cognitive health. However, while I 

report strong longitudinal evidence for the morphometric double dissociation in 

Chapter 3, Chapter 4’s mediation models are derived largely from time-lagged cross-

sectional mediation models, making casual inference more difficult.  

A limitation of the statistical tools employed here is that they rely on researcher-driven 

input and hypotheses. Could a more data-driven approach, such as machine learning 

(ML), have benefitted this thesis? It is almost certain that ML techniques (see 

Kuntzelman et al., 2021 for discussion) could have identified patterns in the data that 

human researchers have missed. For example, a recent paper investigated grey- and 

white- matter in 400 participants across multiple waves using a recently developed 

unsupervised ML technique called mixture-of-experts, which aims to detect 

heterogeneity in data (Eavani et al., 2016). The algorithm identified five subgroups of 
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brain ageing, each defined by different patterns of regional atrophy and white matter 

connectivity (Eavani et al., 2018). The authors conclude that this points to the presence 

of a variety of biological mechanisms which generate MR-detectable phenotypes. 

However, these neural subgroups did not correspond with differences in cognitive 

abilities, which limits their utility in explaining individual differences in cognitive 

ageing. I think that this reflects a general issue with ML-based techniques: pattern 

classification should only be the initial goal; ML’s true usefulness will, ultimately, be to 

provide new ways to connect such neural patterns to cognitive or behavioural 

phenotypes, by being based on theory and plausible mechanisms  (see Carlson et al., 

2018 for discussion on the future of ML in neuroscience).   

A final strength of this thesis is the attempt to link its findings to plausible underlying 

biological mechanisms. First, in Chapter 1, I discuss how the Locus Coeruleus, and its 

release of the neuromodulator noradrenaline, might relate to cognitive abilities and 

thereby serve as a neuro-mechanism of cognitive reserve. An exciting avenue of research 

would be to extend the morphometric mediation findings of Chapter 4 with MR-derived 

LC measures to investigate whether the LC mediates the relationship between lifestyle 

(especially social and intellectual engagement) and cognition. Second, I offer a 

mechanistic hypothesis for the morphometric double dissociation found in Chapter 3: 

it is possible that the rapid declines in cortical thickness (observed longitudinally and 

cross-sectionally) are partially due to age-related dendritic atrophy, while the surface 

area – cognition association might capture glial-neural coupling at the cortical surface, 

as postulated by the  Supragranular Cortex Expansion Hypothesis (Nowakowski et al., 

2016). I hope that surface area will become a more commonly-used measure of brain 

structure, especially in relation to ageing and cognition, and that future research will 

explore its biological underpinnings. Finally, I discuss the role of BDNF as one of the 

mechanisms associated with the relationship between physical exercise and cognitive 

health. My overall goal here was to provide an example of how different scientific 

approaches to (i.e., experimental, observational, interventional) and models (i.e., 

molecular, cellular, rodent, human) of the brain can be used to formulate a biological 
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mechanism which helps explain an epidemiologically observed phenomenon (the link 

between aerobic exercise and cognitive abilities).  In addition to describing candidate 

mechanisms throughout the thesis, I show in Chapter 4 how mediation models can be 

built to reflect concrete, mechanistically plausible frameworks which may help the 

endeavour to link the brain’s underlying biology to MRI-based metrics. Integrating 

mechanistic science (including molecular, cellular, and animal models) with cognitive 

and neuroimaging data is, in my option, key to furthering our understanding of 

cognitive and brain health, decline and disease (see for example (Goriounova & 

Mansvelder, 2019). Increasingly, funding bodies and universities are supporting this 

form of integrative and interdisciplinary neuroscience (Waldman, 2013). For instance, 

in the US, the National Science Foundation initiated a new grant focusing on converging 

“boundary-crossing” scientific approaches to understand neural and cognitive systems4. 

Likewise, in the UK, King’s College London is currently training PhD students in 

neuroscience and immunology, fostering a “new generation of interdisciplinary 

researchers” to better understand how inflammation causes neurodegenerative and 

psychiatric diseases 5.  

I return to the question of mechanisms at the end of Section 5.4.1. My argument will be 

that serious interdisciplinary, mechanism-focused work can match the possibility of 

causal inference policy makers attribute primarily to RCTs, showing that mechanisms 

are not just important for science, but for science’s translation into tangible policies 

affecting people’s lives.  

 
4 https://beta.nsf.gov/funding/opportunities/integrative-strategies-understanding-neural-and-cognitive-systems-
ncs. Recently awarded (for example) to Prof. Lilianne Mujica-Parodi to tackle the relationship between cognitive 
ageing and insulin resistance, a project combining human and animal models: 
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1926781&HistoricalAwards=false 
 
5 https://www.kcl.ac.uk/study-legacy/postgraduate/research-courses/wellcome-trust-phd-training-programme-in-
neuro-immune-interactions-in-health-and-disease 
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5.4 Evidence-based policy  

Globally, the number of adults aged 65 or older is estimated to more than double by 

2030, with dementia rates exponentially increasing from 1-2% of the population for 

those age 65, to 58% for those age 94 (Corrada et al., 2010). It is within this demographic 

shift that the science of healthy aging finds its urgency: identifying risk and protective 

factors for – and delaying the onset of – cognitive decline and dementia is not just 

important for affected individuals, but for the societies and nations in which they live.  

It might be customary to, at this point of the General Discussion, highlight the 

promising ways in which this thesis should impact policy, thereby enabling people to 

age more healthily. However, during the two policy internships I completed during my 

PhD – one with the Chief Scientific Advisor at the Department of International 

Development (DFID), the other with the Healthy Aging team at the World Health 

Organization (WHO) – I was able to gain some insight into the long and complicated 

process by which research findings are translated into tangible policy 

recommendations. In the following sections, I would like to discuss this process in some 

depth:  my hope is to enlighten the reader on its challenges, and to provide a balanced 

view on the role rigorous but fundamental and observational science – such as what I 

have presented in Chapters 2-4 – might, realistically, play in the science-to-policy 

pipeline.   

5.4.1 Evidence hierarchies: when is science good enough for 

policy?  

5.4.1.1  How policy makers evaluate scientific evidence     

One of the WHO’s core tasks is to assess the strength of available evidence regarding 

health policy issues 6. These recommendations are read and implemented by policy 

 
6 https://www.who.int/about/who-we-are/our-values 
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makers, health care providers and individuals, often affecting the lives (and sometimes 

survival) of millions of people, while potentially costing (often developing) nations large 

sums of money. Ensuring that the recommendations are based on high-quality science 

is therefore essential. In 2007, the WHO adopted the Grading of Recommendations 

Assessment, Development, and Evaluation (GRADE) system to support the formulation 

of evidence-based recommendations (G. Guyatt et al., 2011; Oxman et al., 2007). This 

framework, developed by epidemiologists and statisticians, considers several aspects 

including study design (randomized controlled trials or observational studies), risk of 

bias, inconsistency of results, indirectness of evidence, imprecision of measures, and 

risk of reporting bias. The quality of evidence for or against a recommendation is then 

characterized as either high, moderate, low, or very low, as explained in detail in the 

WHO Handbook for Guideline Development (WHO, 2019) 7.  

What struck me during my internship is that high-quality recommendations are 

generally based on evidence from randomized controlled trials – in fact, mainly on 

quality-assessed systematic reviews of RCTs 
8. The WHO assesses (and often conducts) 

these systematic reviews, and evaluates their quality based on factors such as the 

literature search strategy, risk of bias of individual studies, and the statistical methods 

used to combine the assessed RCTs results. According to GRADE, observational studies 

generally provide low quality evidence for (or against) a recommendation – this is 

because cause and effect cannot usually be reliably inferred. There are, however, three 

circumstances under which GRADE recommends upgrading the quality of evidence 

from observational studies (G. H. Guyatt et al., 2011):  i) when there is a large or a very 

 

 
7 https://apps.who.int/iris/handle/10665/145714 
 
8 The quality assessment of systematic reviews of RCTs is often based on the AMSTAR Checklist (Shea et 

al., 2007), which is available online, allowing anyone to easily assess the quality of systematic reviews: 

https://amstar.ca/Amstar_Checklist.php 
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large magnitude of effect, ii) when consideration of all plausible residual confounders 

and biases would reduce a demonstrated effect, or suggest a spurious effect when results 

show no effect, or iii) when there is evidence of a dose–response gradient. 

An example of the first condition, a large effect size, is the relationship between infant 

sleeping position and sudden infant death syndrome (SIDS): one meta-analysis of 

observational studies found an odds ratio (OR) of 4.1 of SIDS occurring with front vs. 

back sleeping positions. Moreover “back to sleep” campaigns that were started in the 

1980s to encourage back sleeping were associated with a relative decline in the incidence 

of SIDS by 50-70 percent in multiple countries (Gilbert et al., 2005). Here, according to 

GRADE, the large effect size and additional population-based epidemiolocal evidence 

merit upgrading the quality of evidence despite there being no RCTs (which would, of 

course, be impossible and unethical to conduct). Similarly, but with regards to cognitive 

aging, while RCTs involving alcohol would be unethical, there is strong observational 

evidence suggesting that excessive alcohol consumption is a risk factor for cognitive 

decline and dementia (e.g., Sachdeva et al., 2016). The WHO’s 2019 guidelines on “Risk 

Reduction of Cognitive Decline and Dementia9” therefore recommend interventions 

aimed at reducing or ceasing hazardous and harmful drinking, rating the quality of the 

evidence as “moderate” (rather than low, as is usually the case with observational 

evidence).  

The second reason for which the GRADE framework recommends up-rating 

observational evidence is when plausible confounders or biases in an observational 

study would result in an underestimate of a possible treatment effect. For example, a 

systematic review of observational studies regarding the relationships between for-

profit versus not-for-profit hospitals and health outcomes found higher death rates in 

for-profit hospitals.  Since patients in non-for-profit hospitals are likely to be sicker than 

those in for-profit-hospitals, any residual confounding would bias the results against 

 
9 https://www.who.int/publications/i/item/risk-reduction-of-cognitive-decline-and-dementia 
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the non-for-profit hospitals. Thus, because biases should diminish the observed effect, 

the fact that it was reliably detected suggests that it is sufficiently large as to warrant a 

“moderate” rather than “low” quality rating.  

The final reason for up-rating observational evidence, according to GRADE, is the 

presence of a dose-response gradient. Of interest to this thesis is, for example, a study 

assessing the dose of moderate-to-vigorous physical exercise (as measured in minutes 

per month via self-report) and executive cognitive function in N=2157 adults aged 60 to 

85. Rather than finding their hypothesized linear dose-response association, the authors 

report an inverted u-shape, whereby “very high” levels of exercise were associated with 

lower cognitive abilities compared to “high” levels of exercise (Loprinzi et al., 2018); an 

effect also found in a different study by the same authors assessing the relationship 

between cardiovascular exercise and mortality (here, the highest exercise group did not 

have greater survival benefits than the second-highest exercise group; Loprinzi, 2015). 

Despite the inverted U-shape pattern, very high levels of exercise were still associated 

with better cognitive functions than very low, low, or moderate levels of exercise, 

suggesting that there is a beneficial dose-response gradient of exercise on cognition. 

This type of result, according to the GRADE framework, increases the likelihood of there 

being a causal effect, thus improving the quality of the evidence.  

In summary, bodies like the WHO rely largely on (systematic reviews of) RCTs when 

translating science into policy recommendations, while observational studies are 

generally interpreted as low-quality evidence, except under certain conditions. Thus, 

based on current evidence hierarchies, the empirical contributions of this thesis would 

be ranked as “low” or “very low” quality evidence in favour of a relationship between 

modifiable lifestyle activities and better cognitive aging. I think that it is important for 

scientists to realistically gauge the possible policy impacts of their work and would 

argue that familiarising oneself with frameworks like GRADE can help do so. That said, 

the following two sections will i) discuss possible downsides of existing evidence 

hierarchies’ focus on RCTs and ii) argue that the successful integration of observational 
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and mechanistic evidence can match the level of causal inference often attributed to 

RCTs.  

5.4.1.2  Is the focus on RCTs warranted?  

One of the most impactful RCTs to date was conducted by economists Michael Kremer 

and Edward Miguel who wanted to find out how to best improve children’s school 

attendance in Kenya. The researchers found that it was not textbooks, flip charts, 

smaller teacher-to-student ratios, or the availability of school buses that helped. The 

only intervention which raised school attendance was treating intestinal worms in 

school-aged children (Miguel & Kremer, 2004). Three years later, at the 2007 World 

Economic Forum, Kremer launched Deworm the World, an initiative which has since 

been scaled and is estimated to have reached over 280 million children worldwide. The 

WHO published the guideline to regularly (i.e., preventatively) treat all school children 

in affected areas, and millions of dollars of tax-payers’ money10 have been spent on 

deworming drugs. The golden bullet was found: a simple, cheap, and effective way of 

improving health, raising school performance, and elevating the educational and 

employment prospects of millions of children. And all because of a single RCT (and 

some follow-up studies, e,g., Nga et al., 2011) Then, in 2012, a Cochrane review showed 

that deworming alone had no effect on growth, cognitive ability or school attendance 

(Taylor-Robinson et al., 2012), a finding supported by a follow-up review in 2015 (Taylor-

Robinson et al., 2015). That same year, researchers from the London School of Hygiene 

and Tropical Medicine re-analysed the original study’s data – spurring what became 

known in the press as the “Worm Wars” (e.g., Belluz, 2015; Boseley, 2015): treating 

children or teaching them about worms did not improve school attendance (Aiken et 

al., 2015; Davey et al., 2015). Miguel and Kremen’s RCT results, the authors claimed, were 

caused by biased treatment of missing data. While the details of this dispute have been 

summarized elsewhere (Clemens & Sandefur, 2015; Majid et al., 2019), I think that the 

 
10 For example, the UK and US have committed USD 68 and 65 million in 2008 and 2010, respectively  (Hotez, 
2011).  
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core lesson from the “Worm Wars” is that the methodological choices researchers make 

when analysing their data greatly affect a study’s results and conclusions (something 

Orben & Przybylski, 2019 have discussed in detail, for example) – and that this applies 

to RCTs just as much as it does to observational studies.  

The deworming example – where global public health policies were implemented 

despite warnings from Cochrane reviews and largely because of one RCT – is an 

exception; as outlined above, usually systematic reviews of RCTs, not individual trials, 

are used to establish the evidence-base of a policy recommendation. Despite this, the 

story highlights a greater issue, namely that the value of RCT evidence depends not on 

a given RTC’s reported result, but on the quality of its statistical analysis. For instance, 

one study found that fewer than half of 193 RCTs assessed statistical power, while all of 

them used statistical significance tests (Faulkner et al., 2008), suggesting that RCTs 

might be prone to being insufficiently powered (see also Tsang et al., 2009). Moreover, 

there is a risk that scholars and policy makers are biased towards RCTs because of their 

‘gold standard’ promise of causal inference, and whether this lowers the methodological 

rigour with which RCTs are assessed. This concern is reflected, for example, in a 2010 

review showing that 35 percent of Cochrane reviews of RCTs had included trials affected 

by outcome reporting bias, where only some (usually the significant) outcome variables 

were selected for publication (Kirkham et al., 2010). Sensitivity analyses showed that 19 

percent of the included meta-analyses became non-significant after adjusting for other 

outcome variables, with an additional 26 percent having overestimated the treatment 

effect by 20 percent or more. Funding bodies and policy agencies are increasingly aware 

of the issue of reporting bias in RCTs: they have called for pre-registration requirements 

of RCTs (Huić et al., 2011; Vandenbroucke, 2015) and for all raw data to be made publicly 

available (Ghersi, 2008) – open science techniques adapted from non-RCT disciplines 

(e.g., Aguinis et al., 2020; Dienlin et al., 2021).  

It is important to contextualize the risk of bias in RCTs and its implications for policy. 

First and foremost, large-scale reviews show that RCTs generally provide accurate 

estimates of average treatment effects for groups that differ only with respect to the 
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intervention of interest (Mansournia et al., 2017). Second, far more often than not, 

results from RCTs and observational studies complement each other: For example, a 

meta-analysis of 14 meta-analyses compared more than 1,000 pairs of observational 

studies and RCTs across 228 medical conditions and found that effect estimates from 

observational studies were not significantly different from those of RCTs. Third, as 

outlined earlier, frameworks which evaluate the evidence base of a given 

recommendation do assess studies based, amongst other factors, on their risk of bias (G. 

Guyatt et al., 2011). While improvements to this “bias filter” may be desirable, especially 

Cochrane reviews have been found to generally be of very high quality (Moseley et al., 

2009; Petticrew et al., 2002).  

To summarize, viewing systematic reviews of RCTs as the bedrock of science policy is, 

in my opinion, largely warranted: there are many examples where such reviews have 

provided strong evidence for or against a treatment or intervention – a level of causal 

evidence that can be difficult to obtain using other study designs. However, the risk of 

bias in (reviews of) RCTs, whereby treatment effects are being overstated, should not be 

ignored. Moreover, it is impossible or unethical to conduct RCTs in many areas of 

research; categorizing the quality of evidence most observational studies as “low” can, 

therefore, seem overly simplistic and punitive. These concerns have led academics and 

policy makers to question the focus on RCTs as the often sole ‘gold standard’ by which 

scientific findings should be translated into policy recommendations. In the final part 

of this section, I outline how mechanistic frameworks could supplement existing RCT-

prioritising evidence hierarchies.  

5.4.1.3  A mechanistic approach to evidence-based policy  

Why would deworming cause wide-spread improvements to Kenyan school attendance? 

Surely, one would only expect to find this effect if the illnesses treated by deworming 

pills were children’s main reason for missing school. This turned out not to be the case:  

the biggest predictor of pupils’ school attendance was the reliability with which teachers 

showed up to school: a World Bank study, for example, found that almost a third of 
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teaching staff were usually absent (Sabarwal & Abu-Jawdeh, 2018). Teachers’ 

absenteeism seemed to be the problem in schools in Kenya – not the worms.  

I think the lesson to be learned here is that in addition to well-powered, high-quality 

studies (whether interventional or observational), there should be a strong, plausible 

mechanistic explanation for a given effect. While well-supported psychological, 

economic, or biological mechanisms are not sufficient to translate science into policy, 

they should form a necessary condition which complements the empirical evidence base 

underlying a given policy recommendation.  

I am not the only one in favour of mechanistic explanations. According to the Russo-

Williamson distinction, in order to establish a causal claim, evidence that X and Y are 

probabilistically related and evidence that there is a mechanism between them are both 

necessary (Russo & Williamson, 2007). Other philosophers of science have since 

formulated the proposal that evidence of mechanisms – such as animal-models, which 

evidence-based policy usually places at the bottom of evidence hierarchies – is as 

important for policy making as RCTs (B. Clarke et al., 2014; Grüne-Yanoff, 2016; Kincaid, 

2012). This is because policy recommendations almost always target populations other 

than those in which they have been tested. Such extrapolative inferences, it is argued, 

cannot be based exclusively on the statistical evidence produced by methods higher up 

in the evidence hierarchies. Marchionni and Reijula recently extended this idea to a 

more formal account; whereby mechanistic evidence forms the causal pathway that 

connects a policy to an outcome (Marchionni & Reijula, 2019). They argue that 

knowledge of whether and when a given causal relationship remains stable relies on the 

variables that mediate and modulate it, and therefore define mechanistic evidence as 

evidence about those variables.  

These philosophical concerns formalize what I hope to have shown throughout this 

thesis, and which I have summarized in Section 5.3 above: the science we do should not 

just include large-sample, diverse cohorts, be well-powered and employ high-quality, 

replicable methodologies – to truly advance our understanding of the aging mind and 
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brain, our work should be based on probable mechanistic hypotheses that are deeply 

rooted in transdisciplinary evidence.  

 

5.4.2  Lifestyle, cognition, and policy  

5.4.2.1  Current policy recommendations  

Section 5.4.1 discussed the ways in which the policy agencies evaluate the evidence-base 

of given policy recommendations.  Against that backdrop, I next summarize how the 

science of modifiable lifestyle activities and cognitive aging – which this thesis 

contributes to – has been translated into global public health policies.  

Table 5-1 summarizes the WHO’s recommendations on physical, social, and cognitive 

engagement, taken from the Guidelines on risk reduction of cognitive decline and 

dementia (WHO, 2019)11. The strongest recommendation is that adults should engage in 

physical activity, especially high levels of aerobic exercise, to reduce the risk of cognitive 

decline. This recommendation is based on four systematic reviews of RCTs (Barha et al., 

2017; Barreto et al., 2018; Northey et al., 2018; Song et al., 2018), which, according to the 

report, provide moderate-quality evidence for a beneficial relationship between exercise 

and cognitive health for adults with normal cognition, and low-quality evidence for 

adults with MCI. For cognitive interventions, the report assessed the effects of 

“cognitive stimulation therapy” (CST; defined as participation in a range of activities 

aimed at improving cognitive and social functioning) and “cognitive training” (which 

refers to guided practice of specific standardized tasks designed to enhance cognitive 

functions). For CST in cognitively normal older adults, the evidence was extracted from 

one systematic review of 18 RCTs (Strout et al., 2016), while the report says no evidence 

 
11 Note that the report addresses a total of 12 intervention categories, but I focus on the three most relevant to this 
thesis. The fill list of intervention categories includes: physical activity, tobacco cessation, nutritional 
interventions, interventions for alcohol use disorders, cognitive interventions, social activity, weight management, 
as well as management of hypertension, diabetes, dyslipidaemia, depression, and hearing loss. 
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was available for the effects of CST in adults with MCI. Strout’s review (which shows 

that half of the RCTs were effective in at least one cognitive domain) reports the results 

in narrative form (rather than by conducting a meta-analysis), leading the WHO to rate 

the quality of evidence as “low”. Similarly, for cognitive training in healthy adults, 

evidence came from one systematic review which (after reviewing 31 RCTs with a meta-

analysis) reported that cognitive training had a moderate positive effect on overall 

cognitive functioning (Chiu et al., 2017). Finally, for social engagement, the report 

concludes that the evidence extracted from one (narratively reporting) systematic 

review of RCTs examining healthy adults was limited and inconclusive (Kelly et al., 

2017). Three of the 39 included RCTs were deemed eligible by the WHO, of which only 

one found that social activity interventions (here group activities in Finnish old people’s 

homes) positively affected cognitive abilities (Pitkala et al., 2011). Therefore, no 

recommendation was made regarding social interventions. The report states that no 

recommendation against social engagement because of its potential other benefits to 

health and wellbeing.  

Intervention 
type  

Recommendation   Quality of 
evidence  

Strength of 
recommendation  

Type of 
studies used 
as evidence  

Physical 
activity 
interventions  

Physical activity should be 
recommended to adults with 
normal cognition to reduce the risk 
of cognitive decline. 

 

Moderate  Strong  4 systematic 
reviews of 
RCTs  

Physical activity may be 
recommended to adults with mild 
cognitive impairment to reduce 
the risk of cognitive decline. 

 

Low Conditional  

Cognitive 
interventions  

Cognitive training may be offered 
to older adults with normal 
cognition and with mild cognitive 
impairment to reduce the risk of 
cognitive decline and/or dementia. 

 

Very low to 
low  

Conditional  2 systematic 
reviews of 
RCTs 
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 Table 5-1: The WHO’s physical, cognitive, and social intervention recommendations for better 
cognitive aging. Adapted from the 2019 Guidelines on risk reduction of cognitive decline and dementia.  

It is understandable that bodies like the World Health Organization err on the side of 

caution when making a policy recommendation: interventions are often expensive, and 

it is important for the WHO’s (often developing) member states to trust that spending 

taxpayer’s money on healthy aging policies will indeed reduce cognitive decline and 

MCI/dementia in their populations.  Still, the disregard of observational studies in the 

recommendations summarized above seems restrictive. In my view, when only few 

and/or low-quality systemic reviews of RCTs are available (as was the case with 

cognitive and social interventions), additionally assessing the observational evidence-

base may be warranted. This was done, for example, in the Lancet Commission 

mentioned in Chapter 1 (Livingston et al., 2020). Here, large-sample observational 

studies and meta-analyses were included alongside RCTs. For cognitive engagement, 

the report discusses a meta-analysis from 22 longitudinal cohorts (total N ~ 30,000), 

which reports a summary odds ratio of dementia for high versus low engagement in 

mentally stimulating activities of 0.5 after controlling for other dementia predictors 

such as age, sex, general health, cerebrovascular disease, education, occupation and 

baseline cognition (Valenzuela & Sachdev, 2006). For social engagement, the Lancet 

Commission considers the wider (arguably mechanistic) context whereby social 

isolation increases the risk of hypertension, coronary heart disease and depression, all 

of which are themselves risk factors for dementia.  Moreover, it includes a meta-analysis 

of longitudinal observational studies which concluded that dementia risk was elevated 

for people with more limited social activity participation (Kuiper et al., 2015). The report 

warns that the relatively short follow-up period in some studies precludes strong 

conclusions about the direction of causation. From this (wider than the WHO’s 

considered) evidence-base, Livingston and colleagues conclude:  

Social activity 
interventions  

There is insufficient evidence for 
social activity and reduction of risk 
of cognitive decline/dementia. 

 

NA NA 1 systemic 
review of 
RCTs 
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“We recommend keeping cognitively, physically, and socially active in midlife 

and later life although little evidence exists for any single specific activity 

protecting against dementia […]. Although behaviour change is difficult and 

some associations might not be purely causal, individuals have a huge potential 

to reduce their dementia risk.” (Livingston et al., 2020, p.413) 

.. and warn that: 

“Although a need for more evidence is apparent, recommendations should not 

wait, as clear indications of ways to reduce the chances of developing dementia 

without causing harm will also lead to other health and wellbeing benefits.” 

(Livingston et al., 2020, p.429) 

In summary, the empirically most strongly supported policy recommendations rely on 

a large body of observational and interventional studies suggesting that physical 

activity, and especially strenuous aerobic exercise, improve cognitive abilities and 

reduce the risk of dementia. The evidence-base for socially and intellectually engaging 

activities is more ambiguous, leading the WHO to avoid making strong 

recommendations regarding cognitive and social interventions. The Lancet 

Commission, which, unlike the WHO, assesses observational evidence alongside RCTs, 

suggests that there is already strong-enough evidence in favour of social and intellectual 

engagement, and that governments should adopt policies targeting these activities. This 

divergence in recommendations between the WHO and Lancet Commission points to 

the greater issue (discussed in section 5.4.1), of the kinds of studies deemed ‘good 

enough’ for policy, and the extent to which RCTs fulfil their ‘gold standard’ promise of 

causal inference.  

5.4.2.2 Policy implications of the present findings  

I mentioned earlier that many scholars, including myself, have the tendency to, in talks, 

papers or grants, point to the promising policy or clinical implications of their findings 

– something the wider academic ecosystem (including many funding bodies) actively 
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encourages. Having outlined the kind of research that does get translated into policy 

above, I think this is not just exaggerative, but potentially dangerous as it inflates the 

importance of individual findings rather than realistically integrating them into the 

wider evidence-base.  

Based on the WHO’s (and other agencies’) standards, this thesis is unlikely to make any 

direct empirical contributions to policy: the observational nature of the data assessed 

here means that causality cannot be readily inferred. Although more generous in its 

inclusion criteria, I doubt that a future Lancet Commission on the relationship between 

modifiable lifestyle activities and cognitive aging would consider the present findings 

helpful: Chapter 2 is entirely based on cross-sectional data, the longitudinal samples in 

Chapter 4 are too small, the follow-up periods too short. Thus, the only way this thesis’ 

findings might realistically impact policy is indirectly, through future meta-analyses. 

Perhaps this thesis’ wider contributions, then, are of a different kind: I hope to have 

shown, to academics, some of the reality and complexity of evidence-based policy, and, 

to policy makers, how mechanically plausible, well-conducted observational studies can 

offer causally meaningful insight into the lifestyle-brain-cognition triangle.
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Appendix A Chapter 3, additional material  

 

A.1 Additional whole brain results  

 

Table 5-2 Comparing whole brain correlations in Cam-CAN and LCBC data 

Metric Model R-Squared  F-Statistic  p BIC 

Cortical 
Volume  

Linear  0.38 399.7 <0.001 5270.861 

Quadratic * 0.39 206.2 <0.001 5269.154 

Cortical 
Thickness 

Linear * 0.36 366.2 <0.001 5291.885 

Quadratic  0.37 184.2 <0.001 5296.544 

Surface Area Linear * 0.13 96.94 <0.001 5491.733 

Quadratic  0.13 48.56 <0.001 5497.909 

Thickinthehead Linear * 0.71 1538 <0.001 4796.678 

Quadratic  0.71 768.2 <0.001 4802.762 

Curvature  Linear  0.60 955.2 <0.001 4996.165 

Quadratic * 0.63 532.4 <0.001 4959.439 

Sulcal Depth  Linear * 0.14 106.2 <0.001 5483.685 

Quadratic  0.14 53.17 <0.001 5489.911 

Correlation  Cam-CAN LCBC 

R p R  p 

Age Volume -.62 <.0001 -.64 <.0001 

Thickness  -.6 <.0001 -.78 <.0001 

Area  -.36 <.0001 -.34 <.0001 

Fluid Intelligence Volume .56 <.0001 .41 <.0001 

Thickness  .42 <.0001 .45 <.0001 

Area  .39 <.0001 .28 <.0001 

Age-residualized 
FldIn 

Volume 0.2 <.0001 .15 <.0001 

Thickness  .039 .33 .077 .0009 

Area  0.21 <.0001 .13 <.0001 



 

Grey Matter 
Volume (SPM) 

Linear * 0.30 269.4 <0.001 5356.77 

Quadratic  0.30 135.2 <0.001 5361.933 

Fractal 
Dimensionality  

Linear * 0.42 467.6 <0.001 5230.34 

Quadratic  0.42 234.1 <0.001 5235.915 
Table 5-3: Comparing linear and quadratic model fit for the metric-age correlations in Cam-CAN. The 
best fitting model (with lower BIC) is marked with *. 

A.2 Additional regional results   

 

Figure 5-1: regions most strongly associated with age. Shows a large variability, with volume showing 
pre-frontal age effects while, for instance, sulcal depth effects are focused in the temporal lobes. 
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 Fractal Dim. Curvature Thickness Thickinthhead Volume TGM Depth Area 

ROI r p r p r p r p r p r p r p r p 

bankssts NA NA NA NA NA NA -0.783 <.001 -0.496 <.001 NA NA NA NA NA NA 

caudal anterior cingulate -0.285 <.001 0.589 <.001 -0.353 <.001 -0.649 <.001 -0.366 <.001 -0.443 <.001 0.131 0.002 -0.216 <.001 

caudal middle frontal -0.479 <.001 0.673 <.001 -0.569 <.001 -0.772 <.001 -0.501 <.001 -0.557 <.001 -0.118 0.005 -0.233 <.001 

corpus callosum -0.207 <.001 0.451 <.001 -0.239 <.001 -0.609 <.001 -0.361 <.001 -0.536 <.001 -0.033 0.494 -0.191 <.001 

cuneus -0.037 0.349 -0.036 0.365 -0.159 <.001 -0.357 <.001 0.016 0.685 -0.35 <.001 -0.008 0.894 -0.009 0.843 

entorhinal NA NA NA NA NA NA -0.313 <.001 -0.264 <.001 NA NA NA NA NA NA 

fusiform -0.38 <.001 0.492 <.001 -0.305 <.001 -0.683 <.001 -0.374 <.001 -0.461 <.001 -0.298 <.001 -0.306 <.001 

inferior parietal -0.555 <.001 0.671 <.001 -0.585 <.001 -0.747 <.001 -0.558 <.001 -0.524 <.001 -0.298 <.001 -0.347 <.001 

inferior temporal -0.27 <.001 0.475 <.001 -0.209 <.001 -0.646 <.001 -0.293 <.001 -0.431 <.001 -0.216 <.001 -0.268 <.001 

insula -0.242 <.001 0.63 <.001 -0.536 <.001 -0.71 <.001 -0.423 <.001 -0.49 <.001 0.018 0.769 -0.004 0.929 

isthmus cingulate -0.352 <.001 0.523 <.001 -0.423 <.001 -0.76 <.001 -0.405 <.001 -0.387 <.001 -0.048 0.303 -0.165 <.001 

lateral occipital -0.414 <.001 0.519 <.001 -0.297 <.001 -0.647 <.001 -0.329 <.001 -0.467 <.001 -0.176 <.001 -0.254 <.001 

lateral orbitofrontal -0.389 <.001 0.396 <.001 -0.2 <.001 -0.627 <.001 -0.491 <.001 -0.502 <.001 -0.226 <.001 -0.386 <.001 

lingual -0.256 <.001 0.506 <.001 -0.321 <.001 -0.65 <.001 -0.343 <.001 -0.567 <.001 -0.14 0.001 -0.201 <.001 

medial orbitofrontal -0.239 <.001 0.335 <.001 -0.296 <.001 -0.55 <.001 -0.443 <.001 -0.541 <.001 -0.002 0.972 -0.226 <.001 

middle temporal -0.446 <.001 0.637 <.001 -0.534 <.001 -0.818 <.001 -0.544 <.001 -0.513 <.001 -0.284 <.001 -0.401 <.001 

paracentral -0.463 <.001 0.459 <.001 -0.578 <.001 -0.663 <.001 -0.605 <.001 -0.564 <.001 -0.039 0.409 -0.161 <.001 

parahippocampal -0.116 0.003 0.226 <.001 -0.149 <.001 -0.45 <.001 -0.354 <.001 -0.433 <.001 -0.062 0.17 -0.232 <.001 

pars opercularis -0.487 <.001 0.637 <.001 -0.6 <.001 -0.826 <.001 -0.597 <.001 -0.617 <.001 -0.063 0.17 -0.333 <.001 

pars orbitalis -0.397 <.001 0.252 <.001 -0.6 <.001 -0.826 <.001 -0.459 <.001 -0.523 <.001 -0.077 0.085 -0.365 <.001 

pars triangularis -0.508 <.001 0.564 <.001 -0.581 <.001 -0.797 <.001 -0.599 <.001 -0.525 <.001 -0.124 0.003 -0.354 <.001 

pericalcarine -0.118 0.003 0.487 <.001 -0.049 0.213 -0.604 <.001 -0.389 <.001 -0.46 <.001 -0.015 0.775 -0.055 0.178 

postcentral -0.469 <.001 0.632 <.001 -0.494 <.001 -0.773 <.001 -0.609 <.001 -0.591 <.001 -0.218 <.001 -0.055 0.178 

posterior cingulate -0.45 <.001 0.595 <.001 -0.459 <.001 -0.706 <.001 -0.529 <.001 -0.522 <.001 0.169 <.001 -0.341 <.001 

precentral -0.526 <.001 0.744 <.001 -0.659 <.001 -0.867 <.001 -0.706 <.001 -0.658 <.001 -0.105 0.014 -0.205 <.001 

precuneus -0.487 <.001 0.663 <.001 -0.559 <.001 -0.731 <.001 -0.526 <.001 -0.408 <.001 0.052 0.259 -0.266 <.001 



 

Table 5-4: Regional age correlations in Cam-CAN. All p-values are FDR corrected at alpha = 0.05.  

rostral anterior cingulate -0.316 <.001 0.379 <.001 -0.248 <.001 -0.597 <.001 -0.36 <.001 -0.53 <.001 -0.017 0.769 -0.227 <.001 

rostral middle frontal -0.546 <.001 0.597 <.001 -0.512 <.001 -0.674 <.001 -0.583 <.001 -0.56 <.001 -0.265 <.001 -0.398 <.001 

superior frontal -0.544 <.001 0.709 <.001 -0.653 <.001 -0.759 <.001 -0.611 <.001 -0.523 <.001 0.001 0.972 -0.313 <.001 

superior parietal -0.514 <.001 0.595 <.001 -0.491 <.001 -0.62 <.001 -0.562 <.001 -0.614 <.001 -0.071 0.114 -0.298 <.001 

superior temporal -0.446 <.001 0.701 <.001 -0.616 <.001 -0.62 <.001 -0.609 <.001 -0.582 <.001 -0.288 <.001 -0.332 <.001 

supramarginal -0.527 <.001 0.735 <.001 -0.651 <.001 -0.814 <.001 -0.532 <.001 -0.529 <.001 -0.131 0.002 -0.266 <.001 

temporal pole NA NA NA NA NA NA -0.469 <.001 -0.065 0.1 NA NA NA NA NA NA 

transverse temporal -0.441 <.001 0.554 <.001 -0.403 <.001 -0.772 <.001 -0.523 <.001 -0.555 <.001 -0.39 <.001 -0.251 <.001 



 

 

213 

 

 Fractal Dim. Curvature Thickness Thickinthhead Volume TGM Depth Area 

ROI r p r p r p r p r p r p r p r p 

bankssts NA NA NA NA NA NA 0.5674 <.001 0.444 0 NA NA NA NA NA NA 

caudal anterior cingulate 0.2698 <.001 -0.417 <.001 0.1704 <.001 0.4147 <.001 0.3295 <.001 0.4097 <.001 -0.0778 0.0635 0.2379 <.001 

caudal middle frontal 0.3771 <.001 -0.471 <.001 0.4006 <.001 0.5299 <.001 0.4446 <.001 0.4864 <.001 0.1249 0.0033 0.2622 <.001 

corpus callosum 0.215 <.001 -0.2576 <.001 0.1928 <.001 0.3885 <.001 0.346 <.001 0.4828 <.001 0.0748 0.072 0.2375 <.001 

cuneus 0.1092 0.0064 -0.0358 0.371 0.1683 <.001 0.3039 <.001 0.0715 0.0733 0.3672 <.001 0.0789 0.0622 0.0963 0.0158 

entorhinal NA NA NA NA NA NA 0.193 <.001 0.2084 <.001 NA NA NA NA NA NA 

fusiform 0.3402 <.001 -0.3918 <.001 0.228 0 0.492 <.001 0.3851 <.001 0.4307 <.001 0.2932 <.001 0.3356 <.001 

inferior parietal 0.4256 <.001 -0.4731 <.001 0.4092 0 0.5132 <.001 0.4706 <.001 0.46 <.001 0.2483 <.001 0.3238 <.001 

inferior temporal 0.2339 <.001 -0.3343 <.001 0.1356 <.001 0.4609 <.001 0.3132 <.001 0.4296 <.001 0.2008 <.001 0.2904 <.001 

insula 0.2481 <.001 -0.4877 <.001 0.4297 0 0.5285 <.001 0.4425 <.001 0.4822 <.001 0.0743 0.072 0.1121 0.0051 

isthmus cingulate 0.3602 <.001 -0.3941 <.001 0.2673 0 0.5197 <.001 0.4097 <.001 0.4044 <.001 0.0888 0.0367 0.2608 <.001 

lateral occipital 0.3459 <.001 -0.3806 <.001 0.2138 0 0.4512 <.001 0.333 <.001 0.4508 <.001 0.1978 <.001 0.2771 <.001 

lateral orbitofrontal 0.3265 <.001 -0.3219 <.001 0.1324 0.001 0.4521 <.001 0.4797 <.001 0.4834 <.001 0.1785 <.001 0.4013 <.001 

lingual 0.2588 <.001 -0.395 <.001 0.2754 0 0.4362 <.001 0.3567 <.001 0.5064 <.001 0.1386 0.0012 0.2481 <.001 

medial orbitofrontal 0.2589 <.001 -0.2022 <.001 0.206 0 0.3608 <.001 0.409 <.001 0.4988 <.001 0.1313 0.0022 0.2646 <.001 

middle temporal 0.3497 <.001 -0.4748 <.001 0.3663 0 0.5803 <.001 0.474 <.001 0.4836 <.001 0.2195 <.001 0.3872 <.001 

paracentral 0.3923 <.001 -0.3062 <.001 0.4319 0 0.4234 <.001 0.5066 <.001 0.4851 <.001 0.0934 0.0298 0.2189 <.001 

parahippocampal 0.0971 0.015 -0.2133 <.001 0.0967 0.0158 0.3032 <.001 0.3136 <.001 0.4221 <.001 0.096 0.0262 0.2378 <.001 

pars opercularis 0.3566 <.001 -0.4324 <.001 0.4052 0 0.5762 <.001 0.4932 <.001 0.5221 <.001 0.1024 0.0176 0.3045 <.001 

pars orbitalis 0.3343 <.001 -0.1666 <.001 0.4052 0 0.5762 <.001 0.4301 <.001 0.4901 <.001 0.0484 0.2331 0.3523 <.001 

pars triangularis 0.4014 <.001 -0.4317 <.001 0.3947 <.001 0.5717 <.001 0.5055 <.001 0.5126 <.001 0.1776 <.001 0.3417 <.001 

pericalcarine 0.1584 <.001 -0.3028 <.001 0.0817 0.0407 0.3864 <.001 0.3562 <.001 0.4512 <.001 0.1093 0.0111 0.1201 0.0027 

postcentral 0.3729 <.001 -0.3886 <.001 0.3695 <.001 0.54 <.001 0.5282 <.001 0.5172 <.001 0.2284 <.001 0.1201 0.0027 

posterior cingulate 0.3972 <.001 -0.4792 <.001 0.27 <.001 0.4584 <.001 0.484 <.001 0.4692 <.001 -0.0528 0.1995 0.3768 <.001 

precentral 0.4311 <.001 -0.5043 <.001 0.5033 <.001 0.6068 <.001 0.5988 <.001 0.5486 <.001 0.1299 0.0023 0.2782 <.001 

precuneus 0.4034 <.001 -0.4873 <.001 0.4185 <.001 0.4999 <.001 0.4739 <.001 0.3961 <.001 0.0232 0.5615 0.296 <.001 



 

Table 5-5: Regional fluid intelligence correlations in Cam-CAN. All p-values are FDR corrected at alpha = 0.05. 

rostral anterior cingulate 0.2956 <.001 -0.3167 <.001 0.1279 0.0014 0.4072 <.001 0.3444 <.001 0.5039 <.001 0.0574 0.1668 0.2567 <.001 

rostral middle frontal 0.4321 <.001 -0.4144 <.001 0.333 <.001 0.4428 <.001 0.5018 <.001 0.5364 <.001 0.249 <.001 0.3703 <.001 

superior frontal 0.4081 <.001 -0.4722 <.001 0.4384 <.001 0.5096 <.001 0.5343 <.001 0.4952 <.001 0.0893 0.0367 0.343 <.001 

superior parietal 0.392 <.001 -0.4086 <.001 0.3547 <.001 0.4109 <.001 0.4642 <.001 0.5267 <.001 0.084 0.0477 0.2766 <.001 

superior temporal 0.3721 <.001 -0.5254 <.001 0.4633 <.001 0.4109 <.001 0.5332 <.001 0.5393 <.001 0.2944 <.001 0.3448 <.001 

supramarginal 0.4267 <.001 -0.5117 <.001 0.4574 <.001 0.5694 <.001 0.4669 <.001 0.4851 <.001 0.2104 <.001 0.2766 <.001 

temporal pole NA NA NA NA NA NA 0.3933 <.001 0.1189 0.0029 NA NA NA NA NA NA 

transverse temporal 0.4103 <.001 -0.4615 <.001 0.3054 <.001 0.5635 <.001 0.4785 <.001 0.5139 <.001 0.3651 <.001 0.283 <.001 



 

 

215 

 

 Fractal Dim. Curvature Thickness Thickinthhead Volume TGM Depth Area 

ROI r p r p r p r p r p r p r p r p 

bankssts NA NA NA NA NA NA 0.0464 0.7974 0.1451 <0.05 NA NA NA NA NA NA 

caudal anterior cingulate 0.1172 0.0071 -0.0261 0.8393 -0.0568 0.5147 0.0107 0.8935 0.1166 0.0039 0.1592 <0.05 0.0295 0.4757 0.1229 0.0024 

caudal middle frontal 0.1048 0.0123 -0.0134 0.9842 0.0432 0.602 0.0303 0.8031 0.1667 <0.05 0.1471 <0.05 0.0924 0.0374 0.1657 <0.05 

corpus callosum 0.1153 0.0071 0.0681 0.3866 0.0553 0.5147 0.0031 0.9507 0.1504 <0.05 0.1203 <0.05 0.0568 0.1715 0.1548 <0.05 

cuneus 0.094 0.0249 -0.0273 0.8393 0.039 0.602 0.0725 0.6909 0.0858 0.0316 0.1504 <0.05 0.0866 0.0491 0.1114 0.0056 

entorhinal NA NA NA NA NA NA -0.0025 0.9507 0.1114 0.0057 NA NA NA NA NA NA 

fusiform 0.1311 0.004 -0.0691 0.3866 0.029 0.6909 0.0312 0.8031 0.19 <0.05 0.1711 <0.05 0.103 0.0222 0.1878 0 

inferior parietal 0.0929 0.0253 -0.0094 0.9842 0.0337 0.6181 0.0219 0.8935 0.143 <0.05 0.1683 <0.05 0.0739 0.0902 0.1392 <0.05 

inferior temporal 0.0773 0.0568 -0.0068 0.9842 0.0207 0.7455 0.0467 0.7974 0.1625 <0.05 0.1638 <0.05 0.1029 0.0222 0.1504 <0.05 

insula 0.1365 0.0032 -0.0634 0.3866 0.1065 0.2351 0.0814 0.6909 0.2199 <0.05 0.195 <0.05 0.1255 0.0052 0.1579 <0.05 

isthmus cingulate 0.1782 <0.05 -0.0477 0.4806 0.0139 0.7787 0.0256 0.8881 0.1898 <0.05 0.1937 <0.05 0.0629 0.1434 0.1956 0 

lateral occipital 0.1047 0.0123 -0.0067 0.9842 0.0195 0.7455 0.0229 0.8935 0.1566 <0.05 0.1941 <0.05 0.1244 0.0052 0.1569 <0.05 

lateral orbitofrontal 0.1215 0.0071 -0.0813 0.3866 0.0415 0.602 0.0654 0.6909 0.2129 <0.05 0.219 <0.05 0.0613 0.1434 0.1971 0 

lingual 0.1367 0.0032 -0.0562 0.4117 0.0921 0.325 0.0316 0.8031 0.1713 <0.05 0.1418 <0.05 0.0447 0.2813 0.1506 <0.05 

medial orbitofrontal 0.1477 0.0021 0.0305 0.8121 0.0341 0.6181 0.0113 0.8935 0.1634 <0.05 0.1834 <0.05 0.1904 0 0.1619 <0.05 

middle temporal 0.0895 0.0298 -0.0535 0.4307 0.0377 0.602 0.0494 0.7974 0.1596 <0.05 0.158 <0.05 0.062 0.1434 0.1697 <0.05 

paracentral 0.1171 0.0071 -0.0154 0.9842 0.06 0.5147 0.009 0.9025 0.1445 <0.05 0.1381 <0.05 0.1009 0.0222 0.1484 <0.05 

parahippocampal 0.0472 0.2376 -0.0684 0.3866 0.0156 0.7727 0.0037 0.9507 0.1075 0.0075 0.1613 <0.05 0.0626 0.1434 0.1099 0.006 

pars opercularis 0.0729 0.0702 -<0.05 0.9842 0.0231 0.7455 0.0372 0.7974 0.1335 0.001 0.1245 0.002 0.1008 0.0222 0.1258 0.002 

pars orbitalis 0.1144 0.0071 0.003 0.9842 0.0231 0.7455 0.0372 0.7974 0.1926 <0.05 0.2176 <0.05 0.0241 0.5474 0.1737 0 

pars triangularis 0.1166 0.0071 -0.0571 0.4117 0.0374 0.602 0.056 0.7974 0.1519 <0.05 0.2034 <0.05 0.1347 0.0037 0.1539 <0.05 

pericalcarine 0.1115 0.0081 0.0694 0.3866 0.0607 0.5147 -0.0171 0.8935 0.1275 0.0017 0.166 <0.05 0.1321 0.004 0.1113 0.0056 

postcentral 0.0824 0.0451 0.0496 0.476 0.0492 0.602 0.0415 0.7974 0.1488 <0.05 0.138 <0.05 0.1241 0.0052 0.1113 0.0056 

posterior cingulate 0.1405 0.0032 -0.1061 0.2342 -0.0092 0.8456 0.0173 0.8935 0.1852 <0.05 0.1733 <0.05 0.0898 0.0419 0.202 0 

precentral 0.1151 0.0071 -0.0146 0.9842 0.0778 0.3985 0.0532 0.7974 0.1731 <0.05 0.1482 <0.05 0.1022 0.0222 0.1955 0 

precuneus 0.116 0.0071 -0.0423 0.5621 0.0687 0.5147 0.0315 0.8031 0.1649 <0.05 0.1831 <0.05 0.0791 0.0736 0.1589 <0.05 



 

Table 5-6: Regional age-residualized fluid intelligence correlations in Cam-CAN. All p-values are FDR corrected at alpha = 0.05. 

rostral anterior cingulate 0.1306 0.004 -0.0643 0.3866 0.0155 0.7727 0.0429 0.7974 0.1442 <0.05 0.1765 <0.05 0.0709 0.102 0.1286 0.0016 

rostral middle frontal 0.1155 0.0071 -0.0024 0.9842 0.0019 0.9625 0.0126 0.8935 0.1746 <0.05 0.2204 <0.05 0.1347 0.0037 0.1671 <0.05 

superior frontal 0.0926 0.0253 0.0068 0.9842 0.0197 0.7455 0.0198 0.8935 0.1833 <0.05 0.2126 <0.05 0.1392 0.0036 0.1958 0 

superior parietal 0.0794 0.052 -0.0048 0.9842 0.0433 0.602 0.0114 0.8935 0.1177 0.0037 0.117 0.0035 0.074 0.0902 0.1054 0.0082 

superior temporal 0.1117 0.0081 -0.059 0.4117 0.0787 0.3985 0.0114 0.8935 0.1808 <0.05 0.1569 <0.05 0.1452 0.0027 0.1891 0 

supramarginal 0.117 0.0071 -0.0045 0.9842 0.0453 0.602 0.0408 0.7974 0.1592 <0.05 0.1725 <0.05 0.1519 0.0021 0.1475 <0.05 

temporal pole NA NA NA NA NA NA 0.0795 0.6909 0.0942 0.0188 NA NA NA NA NA NA 

transverse temporal 0.1582 0.0011 -
0.0969 0.2342 0.0612 0.5147 0.0695 0.6909 0.1677 <0.05 0.1158 0.0037 0.1282 0.005 0.1478 <0.05 



 

 

Figure 5-2: Significant regional age correlation for each metric. FDR corrected at alpha = 0.05. 

 

 

 

 

 

  



 

 

 

 

Figure 5-3: Significant regional fluid intelligence correlation for each metric. FDR corrected at alpha = 
0.05. 
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Figure 5-4: Significant regional age-residualized fluid intelligence correlation for each metric. FDR 
corrected at alpha = 0.05. 

  



 

 

A.3 Additional longitudinal results 

First, to assess whether Cattell test type (online versus pen/paper) made a difference, we tested 

for metric invariance and scalar invariance in the wave two cognitive data. This led to negligible 

drops in model fit (ΔCFI = 0.008 and 0.004 for metric and scalar invariance, respectively, 

Cheung & Rensvold, 2002), suggesting that assuming pencil and paper vs computer-based 

testing had equal measurement properties did not adversely affect the measurement of fluid 

intelligence. For all further analysis, this grouping factor was therefore ignored. Second,to 

ensure comparability of cognitive scores across Time 1 and Time 2, we tested for longitudinal 

measurement invariance (Widaman, Ferrer & Conger, 2010). We found that imposing invariance 

did not meaningfully decrease model fit (ΔCFI = 0.002; Cheung & Rensvold, 2002), suggesting 

longitudinal measurement invariance is tenable, and we were able to proceed to interpret 

change scores in the latent factor. Following the above inspections, we used Latent Change 

Score Models (LCSM) to examine morphometric and cognitive change over time. 

 

 

 Time N Mean Minimum Maximum SD Skewness Excess 
kurtosis  

Age T1 261 54.97 19.25 89 18.17 -0.02   -1.16 

T2 261 56.32 21.25 91.58 18.2 -0.03 -1.18 

Cattell (sum 
score)  

T1 215 32.50 12 44 6.06 -0.39 -0.10 

T2 215 30.42 10 44 6.65 -0.76 0.80 

Surface Area T1 261 2527.43 1896.25 3299.01 256.81 0.22 -0.22 

T2 261 2521.75 1898.46 3297.51 255.73 0.23 -0.21 

Cortical 
Thickness 

T1 261 2.61 2.28 2.89 0.1 -0.19 0.45 

T2 261 2.6 2.29 2.91 0.1 -0.19 0.3 

Volume T1 261 7175.41 5417.15 9412.12 822.25 0.44 -0.05 

T2 261 7124.88 5342.85 9311.37 824.73 0.42 -0.05 
Table 5-7: Cam-CAN raw scores and descriptive statistics for age, Cattell and longitudinal brain 
structure metrics 
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Cam-CAN Model Fit Indices 

Metric  Model   χ2 p RMSEA [90 % CI] CFI SRMR Yuan-Bentler 
scaling factor  

Thickness FIML 5.275 0.072 0.039 [0.000, 0.072] 0.992 0.026 0.763 

Surface 
Area 

FIML 4.228 0.121 0.033, [0.000, 
0.079] 

0.997 0.015 0.721 

Volume FIML 3.655 0.161 0.028 [0.000, 
0.065] 

0.995 0.014 1.468 

Table 5-8: Second order latent change score model fit indices Cam-CAN.  

 

Model Fit Indices  

Metric   χ2 p RMSEA [90 % CI] CFI SRMR Yuan-Bentler 
scaling factor  

Thickness 13.605 0.001 0.090 [0.050, 0.135] 0.993 0.038 1.070 

Surface 
Area 

2.418 0.298 0.033, [0.000, 0.079] 0.999 0.007 1.091 

Volume 47.648 0.000 0.178 [0.133, 0.227] 0.975 0.034 0.845 
Table 5-9: Second order latent change score model fit indices LCBC.  

 

 



 

 

Figure 5-5:  correlations of cognitive change and neural change in Cam-CAN (A-F) and LCBC (G-J). 
Shows that change in surface area is most strongly associated with cognitive change. Models A-C 
include latent cognitive variables, which were not possible to derive from the LCBC data, where we used 
observed cognitive scores instead. To compare like-for-like models, we include Cam-CAN observed 
variable models here, too (D-F). Note that the shaded dots are the models’ missingness estimates.  
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