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a b s t r a c t 

Stimulus repetition normally causes reduced neural activity in brain regions that process that stimulus. Some 

theories claim that this “repetition suppression ” reflects local mechanisms such as neuronal fatigue or sharp- 

ening within a region, whereas other theories claim that it results from changed connectivity between regions, 

following changes in synchrony or top-down predictions. In this study, we applied dynamic causal modeling 

(DCM) on a public fMRI dataset involving repeated presentations of faces and scrambled faces to test whether 

repetition affected local (self-connections) and/or between-region connectivity in left and right early visual cor- 

tex (EVC), occipital face area (OFA) and fusiform face area (FFA). Face “perception ” (faces versus scrambled 

faces) modulated nearly all connections, within and between regions, including direct connections from EVC to 

FFA, supporting a non-hierarchical view of face processing. Face “recognition ” (familiar versus unfamiliar faces) 

modulated connections between EVC and OFA/FFA, particularly in the left hemisphere. Most importantly, imme- 

diate and delayed repetition of stimuli were also best captured by modulations of connections between EVC and 

OFA/FFA, but not self-connections of OFA/FFA, consistent with synchronization or predictive coding theories, 

though also possibly reflecting local mechanisms like synaptic depression. 
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. Introduction 

Repetition suppression (RS) refers to decreased neural responses

roduced by repeated exposures to stimuli. RS is observed in human

tudies using functional magnetic resonance imaging (fMRI; for review,

ee Grill-Spector et al. 2006 ) and has been associated with the behav-

oral phenomenon of “priming ”, i.e., faster and/or more accurate re-

ponses to repeated stimuli. RS has also been used as a tool to infer

unctional characteristics of neural populations, particularly in sensory

egions (also called “fMRI adaptation ”, Grill-Spector & Malach, 2001 ;

arsson et al., 2016 ). For example, two regions in the ventral visual

tream - the bilateral fusiform face area (FFA) and the occipital face

rea (OFA) - consistently show RS to repeated presentations of the same

aces ( Henson, 2016 ). 

.1. Neural theories of repetition suppression 

As described below, four main theories have been developed to

ccount for RS: Fatigue, Sharpening, Synchronization and Predictive
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oding ( Grill-Spector et al., 2006 ; Wiggs & Martin, 1998 ; Gotts et al.,

012 ; Henson, 2016 ). Although these theories have focused on differ-

nt features of repetition effects, the aim of the present study was to

est their predictions in terms of effective connectivity between face-

esponsive regions. To this end, we applied dynamic causal modeling

DCM, Friston et al., 2003 ) on a publically available fMRI dataset that

ncludes initial and repeated presentations of familiar, unfamiliar and

crambled faces ( Wakeman & Henson, 2015 ). DCM is a Bayesian frame-

ork for comparing models with specified connectivity within a net-

ork of regions of interest (ROIs). It incorporates a generative model of

MRI data, in which connections are represented by three ROI-by-ROI

atrices of parameters: the A matrix represents the fixed (or endoge-

ous) directional connections from one ROI to another; one or more

 matrices represent the modulation of the corresponding endogenous

onnections due to one or more experimental manipulations (e.g., each

ype of stimulus); and the C matrix is the direct (or exogenous) input

o one or more ROIs for one or more experimental manipulations. The

ynamics (fMRI timeseries) of the ROIs are then modeled using (1) a

arameterized differential equation that expresses the rate of change of
er 2022 
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eural activity in each ROI as a function of the level of activity in ev-

ry connected ROI, triggered by the timing of each exogenous input;

nd (2) a haemodynamic model that transforms the predicted neural

ctivity into the fMRI BOLD signal, with a small number of haemody-

amic parameters than can vary across ROIs. When applying DCM to

S paradigms, the C matrix can code all stimuli, whereas the B matrix

an code for the difference between initial and repeated presentations

f stimuli (for further details about DCM, see Methods). 

Of the four theories of RS mentioned above, the first two empha-

ize changes within an ROI, which is captured in DCM by the self-

onnections (diagonal terms of A and B matrices). These are constrained

o be negative to ensure the network dynamics are stable (i.e., activity

ventually returns to zero at some time after an exogenous input). Ac-

ording to the Fatigue theory ( Li et al., 1993 ; McMahon & Olson, 2007 ),

t is the neurons that are most selective for a stimulus (and therefore

how the greatest firing to that stimulus) that show greatest reduction in

ring when that stimulus is repeated. This pattern has been observed in

arly visual cortex ( Avidan et al., 2002 ), and may underlie some forms

f perceptual adaptation (e.g., Grill-Spector et al. 1999 ). The mecha-

ism underlying the fatigue could be firing-rate adaptation or synaptic

epression ( Grill-Spector et al., 2006 ). If these mechanisms operate pri-

arily within an ROI (see Discussion), then in the DCM framework, they

ould be captured by changes in the self-connections. 

The Sharpening theory ( Wiggs & Martin, 1998 ) also offers a “within-

egion ” perspective, but makes the opposite neural predictions to fa-

igue theory: i.e., it is the less selective neurons whose firing is reduced

as opposed to the most selective), resulting in a sparser distribution

f firing. The mechanisms of sharpening might include strengthening

f inhibitory, lateral connections between neurons. Consistent with the

harpening model, Jiang et al. (2006) , ( 2007 ) found that perceptual

raining sharpens the tuning of neurons. However, the mechanisms un-

erlying perceptual training might be different from those causing RS

rom a single repeat, and single-cell recording studies in macaque in-

erior temporal cortex found no evidence of sharpening for repeated

timuli ( De Baene & Vogels, 2010 ; McMahon & Olson, 2007 ). At a

opulation-level measured by fMRI (i.e., when averaging over many

eurons within an ROI), because there tend to be more non-selective

han selective neurons, the mean firing rate decreases (causing RS). This

ould again be apparent in DCM by changes in the self-connections of

he B matrix, e.g., increased self-inhibition, indistinguishable from Fa-

igue theory. 

The remaining two theories assume that RS also arises from

onnections between regions. The Synchronization theory of

otts et al. (2012) and Gotts (2016) proposes that repetition leads to

ncreased synchronization of neural activity across regions, such that

reater communication can be achieved despite lower mean firing

ates. The reduced firing rates cause RS, while the increased synchrony

auses more efficient neural processing and hence behavioral effects

ike priming ( Ghuman et al., 2008 ). This increased neural synchrony

s likely to be associated with stronger effective connectivity between

egions, corresponding to off-diagonal elements in DCM’s B matrix. 

Finally, the Predictive Coding theory ( Friston, 2005 ; Henson, 2016 )

uggests that RS is associated with changes in effective connectivity be-

ween regions, as well as within a region. This theory proposes that neu-

ons at one level of a hierarchy receive predictions from higher levels,

nd feed forward the difference (i.e., prediction error) between these

redictions and the input from levels below. When a stimulus has been

rocessed before, the predictions are improved, and therefore the pre-

iction error is reduced. A single ROI (as resolved by standard fMRI) is

ssumed to contain neurons receiving predictions from the level above,

eurons receiving prediction errors from the level below, and neurons

ending the resulting prediction error to the level above (even if these

eurons are in different layers of cortex; Friston, 2005 ). However, as-

uming that the fMRI signal is dominated by the feedforward neurons

hose firing codes prediction error ( Egner et al., 2010 ), the mean fMRI

esponse will be reduced by repetition. Though the mapping from neu-
2 
al interactions to fMRI effective connectivity is not simple (see Discus-

ion), the improved predictions might be expected to affect backward

onnections in DCM (e.g., from FFA to OFA), while the reduced predic-

ion errors fed forward might be expected to affect forward connections

e.g., from OFA to FFA). 

A previous study of Ewbank et al. (2013) used DCM to investigate

ffects of face repetition (within and across changes in the size of im-

ges), and found evidence that repetition modulated connections from

ight OFA to right FFA, supporting the synchronization/predictive cod-

ng account. However, the RS data in that study came from a blocked

MRI design, comparing blocks in which the same face was shown mul-

iple times against blocks in which a new face was shown in each trial.

his blocking means that participants can expect whether or not the

ext stimulus is a repeat, which is also known to reduce the fMRI re-

ponse ( Summerfield et al., 2008 ; also called “expectation suppression ”,

rotheer & Kovács, 2015 ). In the present data, initial and repeated tri-

ls were pseudo-randomly intermixed, dramatically reducing the abil-

ty to accurately expect the next stimulus type. Furthermore, the repe-

ition in the Ewbank et al.’s DCM studies was always immediate (i.e.,

o intervening stimulus), yet the lag between initial and repeated pre-

entations may affect the mechanisms of RS (e.g., immediate repetition

ay engage fatigue to a greater extent than longer-lag repetition; see

pstein et al. 2008 , Henson 2016 ). In the present data, there were also

elayed repetitions (with several intervening faces), which allowed test-

ng of whether the effects of repetition on connectivity differ by repe-

ition lag. Finally, Ewbank et al. (2013) (see also Ewbank et al., 2011 )

nly included 2 ROIs in their DCM: the OFA and FFA in the right hemi-

phere. While this allowed testing of whether repetition affects forward,

ackward and/or self-connections, it did not allow for the possibility

hat repetition already affects the input to these regions, e.g., in the for-

ard connectivity from earlier regions in a processing stream, such as

arly visual cortex (EVC), which limited the ability to test some spe-

ific theories of face processing (see below). Moreover, because the

CM only included ROIs in the right hemisphere, it did not allow test-

ng of whether the same repetition effects occur in the left hemisphere.

otably, though face-related OFA and FFA activations in fMRI are of-

en stronger/more selective in the right hemisphere, paralleling sugges-

ions from brain lesions that the right hemisphere is specialized for face

rocessing ( Ishai et al., 2005 ; Rossion, 2018 ), similar face-related ac-

ivations are found in the left hemisphere. We addressed these issues

y comparing a “2-ROI ” network in each hemisphere separately (as in

wbank et al. 2013 ), with a “3-ROI ” network that also included EVC in

ach hemisphere, and a “6-ROI ” network that included bilateral EVC,

FA and FFA ROIs. 

.2. Network theories of face processing 

Finally, though we have focused on repetition effects, our DCM mod-

ls also allowed testing of other hypotheses associated with face process-

ng. Firstly, we have assumed above (e.g., in the discussion of forward

nd backward connections according to the Predictive Coding theory)

hat FFA sits “higher ” than the OFA in a face processing hierarchy, as

ommon in theories of face processing ( Haxby et al., 2000 ; Fairhall &

shai, 2007 ). However, Rossion and colleagues have suggested that in-

ormation may flow from EVC to FFA first, and then back from FFA to

FA. This is based on neuroimaging findings from patients with OFA

esions, who still show face-related activation in FFA in the same hemi-

phere ( Rossion et al., 2003 ; Gentile et al., 2017 ; Steeves et al., 2009 ).

his suggests a direct connection from EVC to FFA that does not go via

FA (or else input from the contralateral FFA), meaning there is not a

trict, sequential hierarchy from EVC to OFA to FFA. 

The first DCM study of face processing ( Fairhall & Ishai, 2007 ) found

hat face perception modulated connections from OFA to FFA, favouring

he conventional feedforward, hierarchical view. A more recent meta-

nalysis of four DCM fMRI experiments ( Kessler et al., 2021 ) replicated

he increased “forward ” connectivity from OFA to FFA for faces, but
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lso found more negative “backward ” connectivity from FFA to OFA.

owever, neither of these studies allowed for input from EVC to both

OIs, which would allow, for example, face-related input to FFA that

ypasses OFA, as suggested by the patient fMRI data of Rossion and

olleagues. Nor did either study allow modulations of self-connections

y faces, nor modulation of connections between the two hemispheres.

 study by Frässle et al. (2016) tested DCMs that connected OFA and

FA in both hemispheres, as well as input from left and right EVC. Their

ndings highlighted the role of interhemispheric integration between

ilateral OFA in face perception, in addition to feedforward modulations

rom EVC to OFA and then FFA. However, they did not allow the direct

onnections between EVC and FFA suggested by Rossion and colleagues

nor allow modulation of self-connections). We therefore revisited this

uestion in the present dataset, operationalizing face “perception ” by

ontrasting faces with scrambled faces, and adding another “B ” matrix to

apture modulation of connections by face perception. By allowing the

onnections between EVC and FFA to be modulated by face perception,

e could test alternative hypotheses that face-related activation in the

FA arises through altered synaptic weights from earlier visual regions.

Finally, there is also debate around the role of FFA and OFA in

ace recognition, as operationalized in the present dataset by con-

rasting familiar faces (known to participants) with unfamiliar faces

see also Henson et al. 2003 ). While impairments of face recogni-

ion/identification, despite intact face perception, are more often as-

ociated with lesions to more anterior temporal lobe (ATL) regions

 Damasio et al., 1990 ; Gainotti & Marra, 2011 ), neuroimaging studies

ometimes show additional activation of FFA for familiar than unfamil-

ar faces ( Henson et al., 2003 ). While this familiarity-related activation

ould reflect feedback from ATL, we did not include an ATL ROI in the

resent DCMs because no such region showed any differential activity

n the whole-brain contrasts, possibly because of susceptibility-related

MRI signal dropout in this dataset. Nonetheless, we could at least test

hether familiarity effects reflected local effects (self-connections), con-

ectivity from OFA to FFA, or between left and right hemispheres for

xample. 

.3. Methodological advancements 

The previous meta-analysis by Kessler et al. (2021) made inferences

bout individual parameters (connections) in their DCM models of a face

etwork. However, this parameter-level inference ignores potential co-

ariances between the posterior estimates of those parameters, which

imits their reproducibility and interpretability ( Rowe et al., 2010 ).

ere, we focused on model-level inference, which accommodates co-

ariances between all parameters. To address our hypotheses, we per-

ormed binary comparisons of two families of models that differed in

 certain type of connection, such as models with versus without mod-

lation of self-connections by repetition, for example, or models with

ersus without modulation of forward connections from ECV to FFA by

ace perception. More specifically, we compared families in terms of the

ree energy approximation to their model evidences, converted to a pos-

erior probability of one family being more likely than the other (where

 probability of 95% was taken to be sufficient evidence to favour one

amily). 

Furthermore, we employed recent developments in group DCM mod-

ling, using a Parametric Empirical Bayes (PEB) approach ( Friston et al.,

015 ). By creating a hierarchical model, empirical priors at the group

evel shrink the parameter estimates for individual participants toward

hose associated with the global maximum of the model evidence. This

nesses problems due to local minima inherent in the inversion of non-

inear and ill-posed DCM models, thereby providing more robust and

fficient estimates. 

To summarise, the main purpose of this study was to examine critical

ypotheses in terms of connectivity arising from the four theories of RS:

atigue, sharpening, synchronization and predictive coding. If repetition

odulates within-region connectivity (self-modulations in DCM’s B ma-
3 
rix), this is consistent with the fatigue and sharpening models. If repeti-

ion modulates between-region connections (forward or backward mod-

lations in DCM’s B matrix), this is consistent with synchronization and

redictive coding models. Note also that these theories are not mutually

xclusive - for instance, predictive coding may induce neural sharpen-

ng, causing changes both between and within regions. Furthermore, we

ook the opportunity to revisit questions about the functional architec-

ure of face perception and face recognition, given that the dataset in-

luded repetition of unfamiliar faces, famous faces and scrambled faces.

. Materials and methods 

.1. Dataset 

The multi-modal (MRI, EEG, MEG) human neuroimaging

ataset is available on OpenfMRI ( https://www.openfmri.org/

ataset/ds000117/ ; Wakeman & Henson, 2015 ). Participants gave

ritten consent for their data to be shared openly, as described in that

aper. It consists of 19 participants with an age range of 23–37 years

note that this is a superset of the participants available on OpenNeuro,

ttps://openneuro.org/datasets/ds000117). A final debriefing session

as used in which participants identified each face, the data from which

ere used to re-define familiarity of each face for each participant

i.e., reclassifying famous faces they did not know as “unfamiliar ”

nd reclassifying nonfamous faces they said they knew as “familiar ”,

ven though latter was rare). Eighteen participants were included

fter removing one participant whose debriefing showed they did not

ecognize any famous faces in one run. 

During each of the 9 runs, participants made left-right symmetry

udgments to randomly presented images of 16 unique faces from fa-

ous people, 16 unique faces from nonfamous people (unfamiliar to

articipant), and 16 phase-scrambled versions of the faces. Half of the

timuli repeated immediately, and the other half repeated after delays of

–15 stimuli intervals, though trials involving delayed repetition across

uns were removed. Thus each stimulus was presented twice within a

un (its initial presentation and then either immediate or delayed rep-

tition), but never repeated across runs. A fixation cross was presented

efore the stimulus and lasted for a random duration between 400 and

00 ms. The face or scrambled image was then presented for a random

uration between 800 and 1,000 ms. After the stimulus, the interstimu-

us interval comprised a white circle for 1700 ms. To estimate the ‘base-

ine’ of BOLD response, 6 blocks of 20 s of fixation were interspersed

fter every 50 s of stimuli. Each run thus lasted for about 7 min. 

The MRI data were acquired with a 3T Siemens Tim-Trio MRI scan-

er (Siemens, Erlangen, Germany). A T1 -weighted structural image of

 × 1 × 1 mm resolution was acquired using a MPRAGE sequence. The

MRI data came from a gradient echo-planar imaging (EPI) sequence of

3, 3 mm-thick axial slices, with TR of 2000 ms, TE of 30 ms and flip

ngle of 78°. Slices were acquired in an interleaved order and a 25%

istance spacing (increased where necessary to cover whole of cortex),

esulting in a range of voxel sizes of 3 × 3 × 3.75 mm to 3 × 3 × 4.05 mm

cross participants. 210 volumes were acquired in each of 9 runs (for

ore details, see Wakeman & Henson, 2015 ). 

.2. fMRI analysis and ROI selection 

The fMRI data were pre-processed using the SPM12 software

www.fil.ion.ucl.ac.uk/spm). The first two scans were removed

rom each session to allow for T1 saturation effects. The Mat-

ab scripts used for all analyses that follow are available here:

ttps://github.com/SMScottLee/Face_DCM_fMRI. The functional data

ere realigned to correct for head motion, interpolated across time to

he middle slice to correct for the different slice times, and coregistered

ith the structural image. The structural image was segmented and nor-

alized to a standard MNI template, and the normalization warps were

hen applied to the functional images, resulting in voxel sizes of 3 × 3 × 3

https://www.openfmri.org/dataset/ds000117/
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m. These were finally spatially smoothed using a Gaussian filter of 8

m FWHM for mass univariate statistics. 

After preprocessing, fMRI data were analysed in a two-stage approx-

mation to a mixed-effects model. In the first stage, neural activity was

odeled by a delta function at stimulus onset. The BOLD response was

odeled by a convolution of these delta functions by a canonical haemo-

ynamic response function. The resulting time courses were downsam-

led at the midpoint of each scan to form regressors in a General Linear

odel (GLM). The experiment crossed two factors. The first factor was

epetition (initial stimulus, immediately repeated or delayed repeated)

nd the second factor was the type of stimulus (familiar face, unfamiliar

ace or scrambled face). Each test session therefore contained 9 regres-

ors of interest: initial familiar face, immediately repeated familiar face,

elayed repeated familiar face, initial unfamiliar face, immediately re-

eated unfamiliar face, delayed repeated unfamiliar face, initial scram-

led face, immediately repeated scrambled face, and delayed repeated

crambled face. To capture face processing effects and to guide ROI se-

ection (see below), 4 contrasts were predefined: “face perception ” was

perationalised by contrasting all faces versus scrambled faces; “imme-

iate repetition ” was operationalised by contrasting all initial presen-

ations (faces and scrambled faces) versus immediate repeats; “delayed

epetition ” was operationalised by contrasting all initial presentations

ersus delayed repeats; “face recognition ” was operationalised by con-

rasting all familiar faces versus unfamiliar faces. In addition, 5 inter-

ctions between these contrasts were tested (e.g., whether immediate

epetition effects were bigger for faces than scrambled faces). 

The group-level, family-wise error-corrected ( p < .05) results showed

reater BOLD response to faces than scrambled faces (averaged across

nitial and repeated presentations) in bilateral occipital face area

OFA) and fusiform face area (FFA), plus a cluster in left orbitofrontal

ortex. 

While superior temporal sulcus (STS) is often associated with face

rocessing ( Babo-Rebelo et al., 2022 ; Haxby et al., 2000 ) and has

een included in some previous DCM analyses ( Fairhall & Ishai, 2007 ;

essler et al., 2021 ), we did not find it in our group-level univari-

te results and so did not include it in the present analysis. However

t should be kept in mind that some of the present effects in OFA

nd/or FFA could emerge from interactions with STS (or other re-

ions like ATL; see Introduction), which could be investigated in future

tudies. 

To allow for some individual variability in the location of OFA and

FA, and maximize their SNR, these ROIs were defined by the contrast

f faces > scrambled, uncorrected p < .05, for each subject, but masked

ith a 10-mm radius sphere located at the group-result peak (right OFA

x = + 39, y = -82, z = -10], left OFA [x = -36, y = -85, z = -13], right FFA

x = + 42, y = -46, z = -19], left FFA [x = -39, y = -49, z = -22]) in order

o constrain within anatomically-similar areas ( Supplementary Fig. 1 ).

ecause the contrast of all trials > baseline activated most of the occipi-

otemporal cortex (and the stimuli straddled both visual hemifields), the

resent data did not enable selection of distinct clusters for EVC. There-

ore, ROIs for right and left EVC were defined by the contrast of left >

ight and right > left hemifield input from a previous study ( Henson &

ouchlianitis, 2007 ), and masked with subject-specific contrasts of all

rials > baseline in the present data, again to maximize SNR. The num-

er of voxels per ROI ranged across participants from 140-178 for rEVC,

7-151 for rOFA and 5-157 for rFFA; 86-112 for lEVC, 12-143 for lOFA

nd 3-167 for lFFA. 

The first singular vector of the fMRI timeseries across voxels was ex-

racted from these ROIs, and the same GLM described above re-fitted.

lanned comparisons on the resulting parameter estimates were then

ested ( Table 1 ). OFA and FFA showed face-related activation (since they

ere defined this way), though EVC (defined from independent data)

howed de-activation, i.e., greater activation for scrambled faces. The

atter might reflect low-level differences in visual complexity, despite

he phase-scrambling’s preservation of the 2D spatial power spectrum,

r could reflect suppression of low-level features that are predicted by
4 
 higher-level percept ( Murray & Wojciulik, 2004 ). All six ROIs showed

ignificant RS for both immediate and delayed repetition, and greater

S for immediate than delayed repetition. Bilateral FFA also showed sig-

ificant effects of recognition (greater activation for familiar than unfa-

iliar faces). Left EVC and right OFA also showed recognition effects,

hough these would not survive correction for the multiple comparisons

erformed (e.g., Bonferonni for four comparisons for each of six ROIs). 

The only interaction reaching significance was between face percep-

ion and immediate repetition in left OFA. No other interactions between

erception and repetition, or between recognition and repetition, were

ignificant in any ROI. The lack of interactions was somewhat surpris-

ng, in that we expected RS in OFA and FFA to be greater for familiar

han unfamiliar faces, and for faces than for scrambled faces ( Henson &

ugg, 2003 ), but this may be because the repetition lags were shorter

han used previously ( Henson, 2016 ). 

Given the lack of interactions, for the DCM B matrices, we only mod-

led the four experimental effects that significantly modulated activa-

ion in at least two ROIs. These were the main effects of “face percep-

ion ” (contrast vector = [1 1 1 1 1 1 0 0 0], where order of conditions as

bove), “immediate repetition ” (contrast vector = [0 1 0 0 1 0 0 1 0]),

delayed repetition ” (contrast vector = [0 0 1 0 0 1 0 0 1]) and “face

ecognition ” (of familiar faces; contrast vector = [1 1 1 0 0 0 0 0 0]). For

he driving input in the DCM C matrix, we used the common effect of all

timuli versus inter-stimulus baseline ( “all stimuli ”, contrast vector = [1

 1 1 1 1 1 1 1]). 

.3. Dynamic causal modeling (DCM) 

The neural dynamics in DCM for fMRI data are represented by the

rst-order differential equation ( Friston et al., 2003 ): 

𝑑𝑧 

𝑑𝑡 
= 

( 

𝐴 + 

𝑚 ∑
𝑗=1 

𝑢 𝑗 ( 𝑡 ) 𝐵 

( 𝑗 ) 

) 

𝑧 ( 𝑡 ) + 𝐶𝑢 ( 𝑡 ) 

The vector z(t) represents the neural activity in each of the n ROIs

t time t . The n × n matrices A and B 

(j) are directional connectivity

atrices, where the value represents the connection strength (where

 = no connection present). The A matrix captures the fixed (or en-

ogenous) connections, whereas B 

(j) is a modulation on one or more

f these connections due to the j th experimental manipulation. Each B

atrix is multiplied by experimental input u j (t) relating to experimen-

al effects j = 1..m (i.e., one of the four contrasts described above). The

 × p C matrix is the influence of one or more of those experimental

nputs to one or more ROIs in the network (here p = 1 , corresponding to

ll stimuli versus baseline; as above). All inputs were mean-centred, so

he parameters in the A matrix represent the average effective connec-

ivity across conditions. All connection parameters in A, B, C are rate

onstants with units of Hz. The diagonal elements of the A and B matri-

es (self-connections and modulations on self-connections respectively)

re always negative (inhibitory), so that the dynamics of the system set-

les back to baseline after stimulation. These self-connections are log

caling parameters that scale the default value of -0.5 Hz, i.e. total self-

onnection = -0.5 × exp(A ii + B ii ). DCM includes “shrinkage ” priors on

ll connections, so their expected value is 0 unless the data requires

therwise. 

The neural activity in each ROI is then transformed into the modeled

MRI BOLD signal using a nonlinear haemodynamic model with three

ain parameters (for more details, see Stephan et al. 2007 ). These pa-

ameters have tight empirical priors, but can differ between ROIs in

rder to capture different neurovascular coupling across the brain and

cross individuals. The combined neural and haemodynamic parameters

re estimated by fitting the fMRI data from all ROIs using an iterative

cheme that maximizes the free energy bound on the Bayesian model

vidence, which offers a balance between explaining the data and min-

mizing model complexity. 

In more detail, we used a recent extension of DCM to fit multi-

ubject data using Parametric Empirical Bayes (PEB). PEB introduced

https://doi.org/10.1016/j.neuroimage.2022.119708
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Table 1 

T-values for the effects of face perception, immediate repetition (Imm Rep), delayed repetition (Del Rep), face recognition, and their interactions on original data from 6 ROIs and on fitted data in 2-, 3- and 6-ROI 

networks. Note that the T-values for the “Perception ” effect in OFA and FFA are biased by prior selection of the voxels in a whole-brain search; the remaining effects are unbiased since orthogonal contrasts. Positive 

T-values mean greater activation for faces than scrambled for the perception contrast (i.e., negative T-values mean in EVC greater activation for scrambled than intact faces), greater activation for initial than repeated 

presentations for the repetition contrasts (i.e., RS) and greater activation for familiar than unfamiliar faces for the recognition contrast. Second column shows mean percentage across participants of variance in fMRI 

timeseries explained by DCM in each ROI. 

ROI Var. Explain Perception Imm Rep Del Rep Recognition Imm vs Delay Rep Perception × Imm Rep Perception × Del Rep Recognition × Imm Rep Recognition × Del Rep 

Original data 

rEVC -3.08 ∗ 3.87 ∗ 3.75 ∗ 0.83 3.40 ∗ -1.31 -0.27 -1.35 0.44 

lEVC -2.02 5.02 ∗ 5.43 ∗ 2.47 ∗ 4.37 ∗ -1.47 -0.22 0.57 0.59 

rOFA 13.38 ∗ 4.06 ∗ 3.22 ∗ 2.60 ∗ 3.11 ∗ 0.70 -0.43 -0.84 0.43 

lOFA 13.25 ∗ 3.77 ∗ 4.04 ∗ 1.83 3.98 ∗ 2.58 ∗ 0.29 0.70 1.69 

rFFA 10.94 ∗ 6.32 ∗ 4.54 ∗ 5.34 ∗ 5.04 ∗ 1.38 0.05 -0.44 0.46 

lFFA 11.47 ∗ 4.93 ∗ 3.04 ∗ 5.04 ∗ 3.76 ∗ 1.71 -0.08 -0.65 0.53 

2-ROI network of right hemisphere 

rOFA (29%) 9.69 ∗ 4.22 ∗ 2.85 ∗ 2.52 ∗ 3.33 ∗ 0.46 2.12 ∗ a -0.84 0.60 

rFFA (20%) 9.23 ∗ 6.51 ∗ 5.29 ∗ 3.68 ∗ 6.30 ∗ 2.94 ∗ a 4.12 ∗ a -0.80 -1.16 

3-ROI network of right hemisphere 

rEVC (17%) -0.75 a 2.97 ∗ 5.86 ∗ 0.90 3.71 ∗ 1.20 0.65 -0.30 -1.13 

rOFA (35%) 8.30 ∗ 4.90 ∗ 3.51 ∗ 4.22 ∗ 3.93 ∗ 0.50 1.05 -0.28 0.87 

rFFA (28%) 8.46 ∗ 5.08 ∗ 4.31 ∗ 3.90 ∗ 4.43 ∗ 0.69 0.85 -1.41 0.03 

6-ROI network of bilateral hemispheres 

rEVC (16%) 0.83 a 4.70 ∗ 4.23 ∗ 2.34 ∗ a 4.19 ∗ 0.49 -1.51 -0.55 1.01 

lEVC (18%) 0.02 5.62 ∗ 4.97 ∗ 1.42 a 5.13 ∗ 0.77 -1.13 -0.42 1.26 

rOFA (34%) 8.03 ∗ 5.19 ∗ 3.41 ∗ 4.67 ∗ 4.05 ∗ 0.40 -0.15 -0.49 0.83 

lOFA (29%) 8.72 ∗ 5.37 ∗ 3.43 ∗ 4.87 ∗ a 3.92 ∗ 0.42 a -0.17 -0.33 1.21 

rFFA (25%) 8.05 ∗ 5.77 ∗ 4.42 ∗ 4.30 ∗ 4.70 ∗ 0.50 -0.11 -0.42 1.23 

lFFA (22%) 7.75 ∗ 5.84 ∗ 4.20 ∗ 4.40 ∗ 4.40 ∗ -0.52 -0.56 -0.73 1.54 

∗ p < .05, two-tailed t-test. 
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e  
 general linear model (GLM) that encodes between-participant effects

n the DCM parameters ( Zeidman et al., 2019 ). Together, the within-

articipant DCMs and the group-level GLM form a Bayesian hierarchi-

al model. This can be used in an iterative fashion to “rescue ” subjects

ho fall into local optima, by estimating the group-average connectivity

arameters, then using these parameters to form empirical priors for the

ithin-participant DCMs. The DCMs are then re-estimated with these

mpirical priors, and the process repeats ( Friston et al., 2015 ). We used

his iterative fitting, applied to the A and B connections only, with a

ingle covariance component to quantify between-participant variabil-

ty, since preliminary analyses showed that this produced the highest

ree-energy approximation to the model evidence (except for the 2 ROI

odel, where we also applied PEB to the C connection, so as to be

ble to test models differing in the input ROI). We estimated the “full ”

EB model (with all possible connections of interest), before applying

ayesian Model Reduction (BMR) to estimate a subset of alternative

odels. These models were chosen to allow Bayesian Model Compari-

on (BMC) to make inferences about sets of parameters (e.g., “self ” vs

between-region ”, or “forward ” vs “backward ” connections), by group-

ng PEB models into two ‘families’ (for a given hypothesis) and pooling

vidence within each family. 

.4. DCM networks 

Three sets of networks were estimated (see Fig. 1 ), starting from

 simple 2-ROI OFA + FFA network in the right hemisphere, to mimic

rior analysis by Ewbank et al. (2013) , and given prior evidence that the

ight hemisphere is particularly involved in face processing ( Ishai et al.,

005 ; Rossion, 2018 ). We then added a third ROI (right EVC) to form

 3-ROI network, to allow for the important possibility that effects of

epetition, face perception and/or face recognition already arise in the

nputs to OFA and FFA (see Introduction). Finally, we modeled a bi-

ateral network with 3 ROIs per hemisphere, and connections between

omologous OFA and FFA, to allow for possible inter-hemisphere mod-

lations, as proposed by Frässle et al. (2016) . The 2-ROI and 3-ROI net-

orks in the left hemisphere were also estimated and shown as sup-

lementary results, to allow comparison with the results from the right

emisphere. 

.4.1. 2-ROI network 

In the 2-ROI network, all possible connections were included, i.e.,

our endogenous connections (in a 2 × 2 A matrix) representing the av-

rage connectivity for OFA-self, FFA-self, OFA-to-FFA, and FFA-to-OFA.

ll four of these connections were allowed to be modulated by each of

he four experimental effects (the four, 2 × 2 B matrices), i.e., face per-

eption, immediate repetition, delayed repetition and face recognition.

mportantly (compared to 3-ROI network below), the driving input (C

atrix) for all stimuli entered into both OFA and FFA. After fitting this

odel to all participants using PEB, we tested a priori hypotheses using

MC. 

Foremost, we tested for each of the four modulatory effects: 1)

hether self-modulations are needed, by grouping all 16 models into

wo families based on whether a model has an OFA-self and/or an FFA-

elf modulation, and 2) whether any between-region modulation was

eeded, depending on whether the OFA-to-FFA and/or FFA-to-OFA con-

ection was present. If evidence was found for modulation of self- or

etween-region modulation, further binary BMC was used to test in-

ividual self-connections and individual directions of between-region

onnections (e.g., OFA to FFA, or FFA to OFA). 

Secondly, we tested whether the input was needed to one or both

f OFA and FFA. In a strict version of the standard hierarchical model,

nput enters the OFA before being passed on to FFA. However, given

ossion et al’s work ( Rossion, 2008 ; Rossion et al., 2003 ; see Introduc-

ion), we compared this model to models in which input was to FFA

nstead, or both OFA and FFA. 
6 
.4.2. 3-ROI network 

In the 3-ROI network, all possible nine connections were also in-

luded in the A and B matrices, but now the driving input (C matrix)

as restricted to only enter through the EVC ROI, to capture the ex-

ected flow of visual information from early to later visual regions.

n principle, this allowed DCM to drop (set to zero) connections from

VC to OFA or FFA, depending on whether information passes seri-

lly through OFA before reaching FFA, or whether it passes through

FA before OFA (see Introduction), or whether there are direct routes

rom EVC to both OFA and FFA. For the family BMC, we conducted

ve family comparisons: (1) whether EVC-self modulation was needed,

2) whether self-modulation (OFA-self and/or FFA-self) was needed, (3)

hether modulation between OFA and FFA (OFA-to-FFA and/or FFA-

o-OFA) was needed, (4) whether “forward ” modulation (EVC-to-OFA

nd/or EVC-to-FFA) was needed, and (5) whether “backward ” modula-

ion (OFA-to-EVC and/or FFA-to-EVC) was needed. If any modulation

as found (e.g., between OFA and FFA), we further tested which direc-

ion of connectivity was modulated (e.g., OFA to FFA, or FFA to OFA). 

.4.3. 6-ROI network 

In the 6-ROI network, the 3-ROI network for the right hemisphere

as connected to the 3-ROI network for the left hemisphere, in or-

er to account for any interhemispheric integration of face perception

 Frässle et al., 2016 ). More specifically, homologous connections be-

ween left and right OFA and left and right FFA were modeled (no di-

ect connections between left and right EVC were included). All con-

ections had experimental modulations. We performed the same family-

ise BMC as in the 2- and 3-ROI networks above, pooling across both

emispheres. A further family BMC was performed to test whether in-

erhemispheric modulation (OFA-to-OFA and FFA-to-FFA) was needed.

gain, if BMC showed at least one of these connection types was needed

e.g., between left and right FFA), we went further to test which direc-

ion of connectivity was modulated (e.g., left FFA to right FFA, or vice

ersa). 

. Results 

.1. Univariate results and validation of DCM fit 

Before reviewing the DCM connectivity parameters, we first vali-

ated whether the various DCMs captured significant effects in the data.

irst, we examined the proportion of variance in the original fMRI time-

eries explained in each ROI. Averaged across participants, this ranged

rom 16% to 35% across ROIs ( Table 1 ), which is generally good for

CM, given the typical amount of noise in fMRI data (though tended to

e lower in EVC, most likely because this ROI was defined independent

f the current data). 

However, DCM could fit a reasonable percentage of the variance in

he fMRI timeseries by assuming that every stimulus produced an evoked

esponse (versus interstimulus baseline) of equal amplitude, i.e., with-

ut necessarily reproducing the significant differences between condi-

ions (stimulus-types) that was found in the data. To check the latter,

e extracted the timeseries predicted by DCM, fit the same GLM that

as applied to the data timeseries (i.e., with a separate regressor for

ach of the nine conditions) and performed the same T-contrasts on the

esulting parameter estimates that were performed in Table 1 . Note that

hese parameter estimates are not a perfect reflection of DCM’s predic-

ions, because they assume a fixed HRF (the canonical HRF used in the

LM), whereas DCM allows the HRF to differ across participants and

OIs, but the results should be similar nonetheless. 

Fig. 2 presents the parameter estimates from the GLM fit to the orig-

nal data, and from the same GLM fit to the timeseries generated by

CM for each of the 2-, 3- and 6-ROI networks; Table 1 lists the T-

alues of planned comparisons on these parameters from the DCM fit

cf. the T-values of original data, see the top part of Table 1 ). In gen-

ral, the relative pattern of significant differences across conditions was
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Fig. 1. The “full ” DCM structures of 2-ROI (top left), 3-ROI (top right) and 6-ROI (bottom) networks. Black arrows represent endogenous (i.e., task-independent) 

connections (DCM “A ” matrix). Colored dots represent reliable modulations (DCM “B ” matrix) inferred from model comparison (see Results). Note that because the 

family comparisons were performed by pooling across both hemispheres, the results were shown identically in left and right hemispheres (except for the EVC-self 

modulations) in the 6-ROI network. Brown arrows represent driving inputs (DCM “C ” matrix). 
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Fig. 2. Mean GLM parameter estimates from original timeseries (blue) and from timeseries reconstructed by DCM for 2ROI, 3ROI and 6ROI networks (red shades), 

for each ROI (panel) and condition (groups on x-axis). To allow for different scaling factors, the parameter estimates were re-scaled to have same mean over all 

conditions. The nine conditions are initial familiar face (IniFF), immediately repeated familiar face (ImmFF), delayed repeated familiar face (DelFF), initial unfamiliar 

face (IniNF), immediately repeated unfamiliar face (ImmNF), delayed repeated unfamiliar face (DelNF), initial scrambled face (IniSF), immediately repeated scrambled 

face (ImmSF), and delayed repeated scrambled face (DelSF). 
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Table 2 

Posterior probabilities for BMC of two families with versus without various types 

of connection (rows) for each experimental effect (columns) for the 2-ROI, right 

hemisphere network. Values greater than 0.95 are taken as strong evidence 

(shown in bold emphasis). 

Perception Imm Rep Del Rep Recognition 

OFA/FFA-self 1.00 1.00 1.00 0.68 

OFA < - > FFA 1.00 1.00 0.94 0.85 

OFA-self 1.00 0.94 0.17 0.81 

FFA-self 0.86 1.00 1.00 0.32 

OFA- > FFA 1.00 0.22 0.97 0.85 

OFA < -FFA 0.14 1.00 0.14 0.62 
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Table 3 

Posterior probabilities for BMC of two families with versus without various types 

of connection (rows) for each experimental effect (columns) for the 3-ROI, right 

hemisphere network. Values greater than 0.95 are taken as strong evidence 

(shown in bold emphasis). 

Perception Imm Rep Del Rep Recognition 

EVC-self 0.65 0.26 1.00 1.00 

OFA/FFA-self 1.00 0.39 0.49 0.59 

OFA < - > FFA 1.00 0.51 0.30 0.44 

EVC- > OFA/FFA 1.00 1.00 0.19 0.32 

EVC < -OFA/FFA 1.00 1.00 0.18 0.20 

OFA-self 0.99 0.52 0.55 0.35 

FFA-self 1.00 0.35 0.36 0.69 

OFA- > FFA 0.70 0.25 0.25 0.26 

OFA < -FFA 1.00 0.68 0.41 0.59 

EVC- > OFA 1.00 0.99 0.23 0.41 

EVC- > FFA 1.00 1.00 0.23 0.31 

OFA- > EVC 1.00 1.00 0.22 0.26 

FFA- > EVC 1.00 1.00 0.22 0.23 
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eproduced in left and right OFA and FFA by all models, i.e., effects of

erception, recognition, immediate repetition, delayed repetition, and

ifference between immediate and delayed repetition. However, the 3-

OI and 6-ROI networks did not reproduce the greater activation for

crambled than intact faces in right EVC (despite the presence of back-

ard connections from OFA/FFA to EVC). Also, the effects of percep-

ion, immediate repetition, delayed repetition, and difference between

mmediate and delayed repetition, were reproduced in all ROIs in left-

emisphere networks, but a significant effect of recognition was also

roduced in lOFA ( Supplementary Table 1 ). 

.2. Connectivity results 

.2.1. 2-ROI network 

To address the theories in the Introduction about whether specific

ypes of modulatory connection were affected by face perception, repe-

ition and recognition, BMC was performed on pairs of model families

ith versus without certain connection-types. 

There was strong evidence ( > 95% probability) that face perception

odulated both self-connections of rOFA and/or rFFA, and between-

egion connections between rOFA and rFFA ( Table 2 ). Indeed, follow-

p tests showed that modulations by faces was needed for the rOFA

elf-connection and the connection from rOFA to rFFA. 

There was strong evidence that immediate and delayed repetition

odulated self-connections of rOFA and/or rFFA, with follow-up tests

howing that modulation of rFFA was critical. There was also evidence

hat the two types of repetition modulated between-region connections

ifferently, with immediate repetition modulating the connection from

FFA to rOFA, and delayed repetition modulating the connection from

OFA to rFFA. 

There was insufficient evidence to identify which specific connec-

ions were modulated by face recognition in this right hemisphere net-

ork. 

The results for the left hemisphere DCM were similar ( Supplementary

able 2 ), in that face perception affected the lOFA self-connection

nd the lOFA- > lFFA connection, that repetition affected the lFFA self-

onnection, and that delayed repetition modulated the lOFA- > lFFA con-

ection (though modulation by immediate repetition could no longer be

ttributed to the lFFA- > lOFA connection). Unlike the right hemisphere

CM, face recognition now modulated the lOFA- > lFFA connection (sug-

esting that recognition effects were stronger in left hemisphere – see

ater). 

We also tested whether inputs were needed to just one or both ROIs

C parameters). There was compelling evidence (posterior probability

lose to 1.00) that stimulus-dependent input (regardless of stimulus

ype) was needed to both ROIs, consistent with Rossion et al. (2008) ,

nd further justifying consideration of the 3-ROI network below. 

The above results suggest that repetition primarily affects both self-

onnections and between-region connections. However, this assumes

hat the input to both ROIs not already modulated by repetition. Thus

n the next model, we added a third ROI, EVC, connected to both
9 
FA and FFA, which allowed us to ask whether repetition (and per-

eption/recognition) modulated input from EVC to OFA and/or FFA. 

.2.2. 3-ROI network 

There was evidence that all the connections were modulated by

ace perception, except EVC-self connections and the connection from

OFA to rFFA ( Table 3 ). This included a direct connection from rEVC

o rFFA (as well as from rEVC to rOFA), consistent with Rossion’s non-

ierarchical view. The modulations of connections from rOFA and rFFA

ack to rEVC were probably needed to explain the greater activation for

crambled vs intact faces in rEVC (see Univariate Results). 

For immediate repetition however, modulations could no longer be

ttributed to self-connections of rOFA and rFFA, nor the direct connec-

ion between them. Rather, it was the connections from, and to, EVC that

howed evidence of modulation. For delayed repetition, on the other

and, there was only evidence of rEVC-self modulation. There was also

vidence of rEVC-self modulation by face recognition. 

The results for the left hemisphere DCM ( Supplementary Table 3 )

howed similar modulations by face perception, except that the lEVC-

elf modulation showed sufficient evidence, but lOFA self-connection

nd lEVC- > lFFA connection no longer showed sufficient evidence. How-

ver, family comparison could not uniquely localise modulation by im-

ediate or delayed repetition, except for the lEVC-self modulation by

mmediate repetition. There was however evidence that face recogni-

ion modulated the lOFA self-connection and lFFA- > lEVC connection,

gain suggesting left lateralization of this connectivity changes associ-

ted with face recognition. 

In summary, the effects of face perception on self-connections and

onnections between rOFA and rFFA in the 3-ROI network are consis-

ent with the 2-ROI network, but additionally suggest that faces already

tart to differ from scrambled faces in the input to OFA and FFA (a sce-

ario that was not possible to test in the 2-ROI network). This pattern is

ore consistent with a non-hierarchical view, where face information is

resent in a direct input to FFA (at least in the right hemisphere), rather

han conventional hierarchical view in which face information in FFA

nly comes via the OFA. 

On the other hand, the effects of repetition, at least immediate repe-

ition, are different from the 2-ROI network, in that whereas immediate

epetition modulated both self-connections and between-region connec-

ions in the 2-ROI network, it now modulated the connections between

VC-OFA and EVC-FFA in the 3-ROI network (at least in the right hemi-

phere). This is again because the 2-ROI network does not have the ca-

ability to explain repetition effects as arising earlier in the visual path-

ay. Repetition also modulated the self-connection of EVC, though this

as inconsistent across hemispheres, with rEVC-self being modulated by

elayed repetition, but lEVC-self being modulated by immediate repeti-

ion. Nonetheless, the additional modulations of EVC-OFA and EVC-FFA

https://doi.org/10.1016/j.neuroimage.2022.119708
https://doi.org/10.1016/j.neuroimage.2022.119708
https://doi.org/10.1016/j.neuroimage.2022.119708
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Table 4 

Posterior probabilities for BMC of two families with versus without various types 

of connection (rows) for each experimental effect (columns) for the 6-ROI, bi- 

lateral network. Values greater than 0.95 are taken as strong evidence (shown 

in bold emphasis). 

Perception Imm Rep Del Rep Recognition 

EVC-self, l/r 0.98 1.00 1.00 0.11 

OFA/FFA-self, l/r 1.00 0.26 0.54 0.09 

OFA < - > FFA, l/r 0.98 0.13 0.59 0.04 

EVC- > OFA/FFA, l/r 1.00 1.00 1.00 1.00 

EVC < -OFA/FFA, l/r 1.00 1.00 1.00 0.90 

l < - > r, OFA/FFA 1.00 0.03 0.04 0.06 

EVC-self, r 0.99 0.99 0.94 0.15 

EVC-self, l 0.16 1.00 1.00 0.14 

OFA-self, l/r 1.00 0.44 0.75 0.15 

FFA-self, l/r 1.00 0.09 0.11 0.11 

EVC- > OFA, l/r 1.00 1.00 1.00 1.00 

EVC- > FFA, l/r 1.00 1.00 1.00 0.98 

OFA- > EVC, l/r 1.00 1.00 1.00 0.96 

FFA- > EVC, l/r 1.00 1.00 1.00 0.04 

OFA- > FFA, l/r 0.19 0.02 0.03 0.06 

FFA- > OFA, l/r 0.99 0.29 0.81 0.06 

r- > l, OFA/FFA 1.00 0.07 0.02 0.10 

l- > r, OFA/FFA 1.00 0.20 0.10 0.05 
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onnections in the right hemisphere suggest that local changes within

VC (e.g., fatigue or sharpening) are not sufficient to explain “down-

tream ” RS in OFA and FFA (or “inherited adaptation ”, Krekelberg et al.,

006 ). Further implications of these results are considered in the Dis-

ussion, after comparing with results from the final 6-ROI network. 

.2.3. 6-ROI network 

The 6-ROI network combines the right and left 3-ROI networks, with

dditional “inter-hemispheric ” connections between rOFA and lOFA,

nd rFFA and lFFA (but not EVC). 

For face perception, there was evidence that all connections

ere modulated, except for the lEVC-self and OFA- > FFA connections

 Table 4 ). The EVC-self modulation by perception on left but not right

emisphere was different from 3-ROI networks. The absence of OFA-

 FFA modulation was like for the 3-ROI networks above. 

For immediate repetition, and like in the 3-ROI network, there was

gain compelling evidence for modulation of connections from EVC,

ithin EVC (self) and to EVC, but no evidence of modulation of self-

onnections and direct connections between rOFA and rFFA. There was

o evidence of modulation of inter-hemispheric connections. Unlike the

-ROI network, there was also evidence that delayed repetition modu-

ated the same connections as immediate repetition, i.e., EVC-self, from

VC to OFA/FFA and vice versa. This might reflect the doubling in the

mount of data being fit. 

Finally, for face recognition, there was evidence for modulation of

VC-to-OFA and EVC-to-FFA modulations, as well as OFA-to-EVC. This

attern is unlike the 3-ROI networks, but may reflect the pooling across

oth hemispheres (see supplementary Table 3 ). 

. Discussion 

In this study, we applied Dynamical Causal Modeling (DCM) with

arametric Empirical Bayes (PEB) on a publically available fMRI dataset

n order to estimate the effective connectivity within networks including

he left and/or right face-sensitive regions of occipital face area (OFA)

nd fusiform face area (FFA), plus input from early visual cortex (EVC),

n response to initial and repeated presentations of familiar faces, unfa-

iliar faces and scrambled faces. We applied DCM to unilateral 2-ROI

nd 3-ROI networks, as well as a bilateral 6-ROI network, but focus on

hose effects that were consistent across these networks. 
10 
.1. Face repetition effects 

Our main interest concerned the effects of immediate and delayed

epetition of stimuli, specifically whether the well-documented repeti-

ion suppression (RS) in OFA and FFA is best explained by local changes

self-connections in DCM), as predicted by fatigue and sharpening the-

ries, or by between-ROI connections, as predicted by synchronization

nd predictive coding theories (see Introduction). When using a simple

-ROI network of right OFA and right FFA, as in Ewbank et al. (2013) ,

e found evidence that both immediate and delayed repetition modu-

ated the FFA self-connection and connections between OFA and FFA

and similarly for the two homologous regions in the left hemisphere).

his is not consistent with the findings of Ewbank et al., who found that

epetition affected only the connection from OFA to FFA (when the face

mage was the same size, as here). This discrepancy could reflect several

actors, including the present use of a randomized rather than blocked

esign, where a randomized design reduces the influence of expectation

f repetition ( Henson, 2016 ). 

More importantly however, the 2-ROI network does not allow rep-

tition to modulate the input to OFA and/or FFA. In other words, the

-ROI model considered by Ewbank et al. (2013) does not allow RS to

rise earlier in the visual processing pathway, i.e., in the inputs to OFA

nd/or FFA. To accommodate this, we also fit a 3-ROI network in which

 third ROI, early visual cortex (EVC), was connected to both OFA and

FA. For the right hemisphere, we now found that immediate repetition

odulated both “forward ” and “backward ” connections between rEVC

nd rOFA/FFA (and lEVC self-connections in the left hemisphere), but

here was no longer evidence that it modulated the direct connections

etween rOFA and rFFA, or the self-connections of rFFA (or rOFA). Thus

ontrary to the 2-ROI architecture, the 3-ROI architecture, by allowing

epetition to modulate the input to OFA and FFA, instead favoured syn-

hronization or predictive coding accounts of RS in these regions, at

east for immediate repetition (the results for delayed repetition were

ess consistent). 

Our last step was to test the modulation of repetition in the 6-

OI network, which allowed additional interhemispheric modulation.

ike for the 3-ROI, right hemisphere network, we found that immedi-

te repetition modulated the connections between EVC and OFA/FFA,

ut not direct connections between OFA and FFA, nor self-connections

f OFA/FFA. Moreover, repetition modulated EVC self-connections. The

ame pattern was now also found for delayed repetition. Thus, the con-

istent findings of between-region modulations across 2-, 3- and 6-ROI

etworks suggests that RS in OFA and FFA is at least partially caused by

nteractions between regions, as predicted by synchronization and pre-

ictive coding models (or synaptic depression), in addition to any local

rocesses within EVC. It is worth noting that repetition effects within

ne ROI (e.g., EVC) would have “knock-on ” consequences for other ROIs

eceiving input from that ROI (e.g., OFA and FFA). In other words, RS

ithin EVC could cause RS in OFA/FFA, even without any modulation

f further connections by repetition (through the influence of DCM’s

xed “A ” connections). The fact that DCM needed to additionally mod-

late some of these between-region connections suggests that RS in OFA

nd/or FFA are not simply “downstream ” effects of RS in earlier regions

ike EVC. Thus it is important to note that we are not arguing that our

esults refute local mechanisms like fatigue or sharpening (which might

ccur in EVC for example); only that they suggest additional repetition-

elated mechanisms affect the communication between regions. 

Finally, note that these repetition effects were averaged across famil-

ar, unfamiliar and scrambled faces, because we did not find significant

nteractions between repetition and stimulus-type in the univariate ac-

ivation of the six ROIs (except in lOFA, but this would not survive cor-

ection for multiple comparisons across ROIs). For example, one might

ave expected greater RS in OFA and FFA for faces than scrambled faces.

his lack of interactions was true for both immediate and delayed repe-

ition, despite the greater RS overall for immediate repetition ( Table 1 ).

he lack of interactions was surprising, because we have found such

https://doi.org/10.1016/j.neuroimage.2022.119708
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nteractions in previous work (e.g., Henson et al. 2000 ), though these

ended to use larger lags between initial and repeated presentations, and

ag may modulate repetition effects ( Henson, 2016 ). 

.2. Face perception effects 

When we compared whether the input was to one or both ROIs in

he 2-ROI network, we found strong evidence that input to both ROIs

as needed. This is consistent with imaging evidence from patients with

FA lesions reported by Rossion et al. (2008) , who still showed FFA ac-

ivation. The 3-ROI network provided further support for this, with evi-

ence that connections from EVC to both OFA and FFA were modulated

y faces. This suggests that face information is already extracted in the

ransformations from EVC to OFA and FFA, contrary to the “standard ”

ierarchical model that assumes that input to FFA only arises from OFA.

Several previous DCM studies have examined the face modu-

ations among EVC, OFA and FFA. Consistent with our results,

ohse et al. (2016) found face modulation on “forward ” connections

rom rEVC to rOFA and to rFFA, while Furl et al. (2015) found

ace modulation on the connection from rEVC to rOFA only.

rässle et al.’s (2016) study was the only one to include bilateral EVC,

FA and FFA. Their results revealed face modulation on connections

rom EVC to OFA, and between right and left OFA, like in our 6-ROI

etwork, but also from OFA to FFA, unlike in our 3- and 6-ROI net-

orks. However, the latter might be caused by different model specifica-

ions between their and our studies. First, they did not allow any direct

onnections (and hence modulations) between EVC and FFA. In addi-

ion, none of these studies allowed modulations on self-connections. Our

tudy estimated all possible DCM connections and modulations among

VC, OFA and FFA, and showed that “forward ” (EVC to OFA), “back-

ard ” (OFA to EVC) and inter-hemispheric modulations were needed

or face perception in our data, but not direct connections between OFA

nd FFA. 

While our 6-ROI results were generally comparable with our 3-ROI

esults, the striking differences between our 2-ROI and 3-ROI results

ighlight the importance of the model architecture when testing hy-

otheses with DCM. While our results show that the addition of an

VC region has important effects on the conclusions one draws, it is

ossible that the results would change again if other regions were

dded, like anterior temporal lobes, amygdala ( Xiu et al., 2015 ), or

n particular superior temporal sulcus (STS), which is well-known to

ave face-responsive neurons ( Furl et al., 2015 ; Kessler et al., 2021 ;

ohse et al., 2016 ). Indeed, using an exhaustive data-driven approach

alled “Group Iterative Multiple Model Estimation ” ( Gates & Mole-

aar, 2012 ), Elbich et al. (2019) found that connections from STS to

FA/FFA were also modulated by faces. Though STS did not show sig-

ificant face-related activation that surpassed our corrected threshold,

hich is why we did not include it here, future work could add STS to

CM networks like the ones here. 

There are other differences between prior studies that may also af-

ect which connections are modulated by face processing, such as the

pecific stimuli contrasted with faces (e.g., phase-scrambled faces, as

ere, versus non-face stimuli like objects or cars, Furl et al. 2015 ,

ohse et al. 2016 ) or the type of design (e.g., randomized versus blocked,

rässle et al. 2016 , Furl et al. 2015 ; Lohse et al., 2016 ), which can affect

op-down expectancies for a certain type of stimulus. The role of these

actors could be explicitly tested in future empirical studies. 

.3. Face recognition effects 

When analysing the right hemisphere networks, we were not able to

niquely attribute face recognition effects to specific connection-types.

ote that this does not mean that DCM could not reproduce the greater

ctivations to familiar faces that was found in many of the ROIs (includ-

ng right hemisphere; Fig. 2 ); it just means that the timeseries related to

amiliar faces did not allow inference about which type of connection
11 
ould uniquely reproduce the distinct parts of that timeseries (com-

ared to other stimulus types). In other words, it is possible that changes

n self, forward or backward connections could equally well explain the

istinct part of the ROI timeseries related to face recognition. When

nalysing the left hemisphere networks, on the other hand, it appeared

hat the lOFA self-connection was modulated by face recognition. 

However, when analysing the bilateral 6-ROI network, a different

esult emerged, with face recognition modulating forward connections

rom EVC to OFA and FFA (averaged across hemispheres), as well

s from OFA to EVC. Given these quite different results across the

arious networks, we remain cautious about interpreting connectivity

hanges associated with recognition of familiar faces, particularly since

uch recognition may also involve interactions with more anterior re-

ions like anterior temporal lobes (ATL) and orbitofrontal cortex (OFC)

 Fairhall & Ishai, 2007 ), and possibly even left lateral prefrontal re-

ions associated with covert naming of known faces. Future DCM models

ould investigate whether the greater activation to familiar faces in the

resent ROIs reflect top-down feedback from regions “higher ” on the

isual processing pathway (e.g., using better matched stimuli, cognitive

asks that explicitly require face identification, and fMRI sequences op-

imised to handle signal drop-out in OFC and ATL). 

.4. Hemispheric differences 

Most studies examined connectivity among regions in the right

emisphere because of the hypothesized specialization of right hemi-

phere for face processing ( Kanwisher et al., 1997 ). However,

rässle et al. (2016) included OFA and FFA in both hemispheres, and

laimed that the right lateralization of the activation pattern was due

o an interhemispheric modulation from left to right OFA. Furthermore,

ecause their face images were presented in either the right or left vi-

ual field, they found evidence of modulation of connections from EVC

o OFA in both hemispheres by both the visual field and the presence

f faces. Though faces were presented centrally in our data, our 6-ROI

etwork also found modulation by faces on both interhemispheric con-

ections and EVC-to-OFA connections in both hemispheres, supporting

he claim that face processing is not specific to the right hemisphere. 

.5. Limitations and future directions 

There are several methodological limitations of this study. First, any

CM analysis evaluates models defined within a certain architecture

determined by the number of ROIs and connections allowed between

hem). This means there may be other more probable models compris-

ng different regions and connections. In this study, we focused on two

egions showing significant experimental effects of face and repetition,

FA and FFA, and their likely input region, EVC, and allowed for some

ariations in architecture by focusing on results that were consistent

cross 3 different networks (2-ROI, 3-ROI and 6-ROI networks). More

enerally, one could use lots of ROIs and evaluate whether a method

ike greedy search using BMR, or Group Iterative Multiple Model Esti-

ation, will reveal the most parsimonious set of connections between

hem. However, when we tried greedy search here, the results (e.g., signs

f connections) were difficult to interpret, at least when more than two

OIs, most likely because of the high co-dependency between connec-

ion parameters in such fully-connected and recurrent networks. There-

ore, we resorted to more hypothesis-driven, family-wise BMC to focus

n specific connection types. 

A second limitation is that mapping from DCM’s connection types to

nderlying neural mechanisms is not simple. For example, the physio-

ogical process of synaptic depression is often cited as a possible neural

echanism underlying the fatigue model, yet could also cause reduced

ffective connectivity between regions. For example, if the synapses

rom neurons in EVC to OFA/FFA were depressed, activity in EVC may

ave less effect on the (rate of change of) activity in OFA/FFA. In other
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ords, finding modulations of between-region connections rather than

elf-connections does not necessarily rule out fatigue models. 

The third limitation is that, while both synchronization and predic-

ive coding models are consistent with the general concept of repetition

ffecting connectivity between regions, the direction of this effective

onnectivity remains unclear. In predictive coding for example, repeti-

ion both improves top-down predictions and reduces bottom-up pre-

iction errors, and it is unclear how either of these relate precisely to

orward and backward fMRI connectivity. One way to address this issue

s to apply DCM to EEG and/or MEG data. The much richer dynamics

n EEG/MEG evoked responses allows fitting of more complex neuro-

hysiological models, e.g., “canonical microcircuit ” model ( Bastos et al.,

012 ), in which forward and backward connections operate with differ-

nt timescales. Furthermore, predictive coding does not rule out within-

egion (self-connection) modulation too, particularly in more complex

mplementations that allow for interactions between cells within differ-

nt layers of cortex within the same ROI. Future high-resolution fMRI,

.g., at 7T, might allow separate modeling of cortical layers. Predictive

oding theory would predict that repetition causes reduced activity in

uperficial pyramidal cells in the supragranular layer, and changes in its

onnectivity with inhibitory interneurons in other layers. 

. Conclusion 

To conclude, we used DCM to examine the effective connectivity

mong face-selective regions during face repetition, face perception and

ace recognition. We found that repetition modulated connections be-

ween regions, specifically EVC and OFA/FFA, in addition to any mod-

lation of self-connections (e.g., of EVC). This modulation of effective

onnectivity between regions is consistent with synchronization and/or

redictive coding theories of repetition suppression ( Ewbank & Hen-

on, 2012 ). This suggests that local fatigue or sharpening models of rep-

tition suppression are not sufficient, though we cannot rule out local

ffects like synaptic depression also affecting connectivity between re-

ions. While the effective connectivity associated with recognition re-

ains unclear, a consistent finding regarding face perception was that

t included modulation of connections direct from EVC to FFA, with-

ut needing modulation from OFA to FFA, which supports recent sug-

estions for a non-hierarchical view of the “core ” face network in the

osterior ventral stream. 
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