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A family of brain connectivity methods

Connectivity

SEM
Functional Effective
Coherence Granger
Correlations DCMs
CCA/ICA PPl
iIEEG fMRI
M/EEG

Graph metrics

Convolution Conductance



Dynamic Causal models

* Dynamic

() et e M
O A e Wby

_x1 (t)_
x(t)=| :
| X, (1) ]
X
dx . :
—=X=
dt

hY

n

System dynamics = change of state vectors in time

Connectivity as time constants
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Dynamic Causal models

* Dynamic
e Causal

Causal effects in the system:
interactions between elements X — F (X, U, (9)

events in the world u
system parameters 6

Including connectivity x1 2 x2 versus x2 2 x1



Dynamic Causal models

* Dynamic o f(z, U, 9<n>)
e Causal

y=g (z, H(h)) + X908y + €
* Models
0 z = Jz+Cu(t)
= <A+ > BY ug (t))
J=-0.5-exp(Ay) - exp (Z ng) UL (t))
k

S ~ % A — baseline connectivity
Intrinsic (sel f—inhibition) .
B — task modulation
+ (AE+ZB%‘”) g, (t)) C - Driving inputs
k

R y U — task events

~
Extrinsic (between—region)




Dynamic Causal models

* Dynamic 2= ¢ (z, U, g(n))
e Causal ( O(h)) L Xy, 4

y=g|z e
* Models o
hypotheses tested in terms of parameters
hypotheses tested in terms of model comparison

Historical comparison: AIC, BIC, GBF, BRFX, ....
Now free energy F ~ log(model_evidence)
= accuracy — complexity



Estimating the parameters....

Priors used to inform Bayesian Bayes Theorem

parameter estimation
| | p(@1y) < p(y|6)- p(0)
express prior knowledge (belief)
about parameters of the model posterior o likelihood
updated belief « new data -

Update beliefs according to the 07 oo

new evidence (and precision) il = Liksiingas
0.5¢

hemodynamic parameters and 0.4/

connectivity parameters 03l

0.2+

0.1r

95 20 ' 25 30



Bayesian Model Selection

Bayes theorem: p(y|6,m)p(@|m)

p(@]y,m)=

Model evidence:
p(y|m)= [ p(y|6,m)- p(@|m) d6

Bayes factor B:

compare two models i and j by p(yl m = I)

the ratio of probabilities Bij = !
p(yIm= J)

F ~log p(y|m) =accuracy(m)—
complexity(m) AR, =F -F,



Bayesian Model Selection

Bayes theorem:

Model evidence:

Bayes factor B:

p(y |6, m)p(6]|m)

p(@]y,m)=

p(y|m)= [ p(y|6,m)- p(@|m) d6

compare two models i and j by p(y | m= I)
the ratio of probabilities Bij = ;
B, p(m,ly) | Evidence AF p(y | m= J)
1to3 50-75% weak
3to 20 75-95% positive >1.1
20 to 150 | 95-99% strong >3 AFij = Fi - Fj
> 150 >99% | Very strong >5




Group studies

Historical AIC, BIC, group-Bayes-factor (sum over
individuals)... but vulnerable to outliers

Then “Random Effects” models selection

specify multiple DCMs per subject then estimate the relative probability
that any randomly selected person from the population would have had
their data generated by each model (ie random effect over models)

Parametric Empirical Bayes (PEB)

Random effects on parameters rather than models. All subjects have the same
basic architecture, but differ in terms of connection strength in that model



PEB

Between-subjects Xp

Subject
(VN]
=]

Regressor

If mean-centred, then the first
column of ones corresponds to
mean experiment-related
changes in connectivity over
subjects, and between-subject
effects add to this.

le the first regressor represents
group mean effective
connectivity.

DCM parameter
M = oo B W M

Within-subjects Xy

1 2 3 45 6 7 8

DCM parameter

which DCM
connectivity
parameters can
receive between-
subject effects

Design matrix X = Xp QX
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what the
experimental

(between-subject)
effects act on; ie.
which (within-
subject) parameters



PEB

invert the PEB model (spm_dcm_peb.m) to get two useful quantities:
the estimated group-level parameters
and the group-level free energy

Group level GLM parameters 6%
4

Commonalities Laterality

Estimate
(=1

F2 ~Log p(Y|m)

00— _.J——' T [E L:l_—JJ'J__

1 g9 16
GLM Parameter

F ~ log of the probability of observing the neuroimaging data (from all subjects) given the entire hierarchical model m.

Sum of all subjects’ DCMs accuracies, minus the complexity induced and the second-level GLM.

Can compare free energy of PEB models with different sets of parameters switched on and off to find the optimal explanation for the
dataset as a whole.



PEB

invert the PEB model (spm_dcm_peb.m) to get two useful quantities:
the estimated group-level parameters
and the group-level free energy

Where multiple factors are subject to multiple covariates the number pf models of
very large — so consider to reduce to model “families” (cf standard DCM)

Or Bayesian Model Reduction (BMR): free energy and parameters for ‘reduced’
models are computed analytically. The difference between a full and reduced models
is their priors (eg. some connections switched off, spom_log_evidence_reduce.m)



fMRI



How to stop what you are doing?

[ A 4 preSMA A
Motor cortex (M1) : . :
: . (i) Selection of action

Source of corticospinal

L (ii) For inhibition of action,
projections for motor control . .
\ ) \ prior to IFG (Husain) y

Inferior frontal gyrus (rIFG)
(i) Inhibiting actions (Aron,
Poldrack, Neurbert)
(ii) orienting to relevant
events (Sharp, Hampshire)

Subthalamic nucleus (STN)
brakes the thalamic outputs of
the basal ganglia
(Frank, Strafella, Forstmann)







Dynamic causal modelling (DCM) to study
connectivity of the stopping network

activity

x(®)

vasodilaty signal

’—’s:z—ksfy(ffl)‘—‘
J

.
flow indhicion
f=s
S

changes imolum v changes idlHb

| =" g =fEe) p—v"alv
v q

BOLD signal
y()=Uv.q)

aemodynamic

The aim of DCM is to estimate parameters at the
neuronal and vascular levels such that the
modelled and measured BOLD signals are
optimally similar (maximising model evidence, F)




DCM for fMRI

(1) Neuronal (3) Haemodynamic MRI BOLD
activity response response
(2) Meurovascular (4) Detection by

Experimental 0. i coupling MRI scanner T
. 3 n o.° oo = o)
stimulus (u) ; - > s

/Neural model Haemodynamic model "
B J m Y Prediction

"X =(x,u,6)

—_—

System is modelled at its
neuronal level (not directly .
accessible to fMRI).

e The modelled neuronal dynamics (X) are
transformed into region-specific BOLD

signals (y) by a hemodynamic model (A)






How to stop: a DCM study of

the stop-signal response task
(Rae et al J Neurosci 2015)

LINEAR MODELS
IFG- preSMA- IFG- preSMA-
boky STN STN preSMA IFG

NONLINEAR MODELS

IFG preSMA




Bayesian model selection:
alternate hypotheses embedded in generative models
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Rae et al., J Neurosci 2015



Stronger effective connectivity (DCM)
means more efficient stopping (SSRT)

1.5

r=-0.546
1.0 p=0.023
0.5 * ™

IFG = (preSMA - STN)
o
o

-0.5
-1.0 &
L 2
-1.5
150 200 250 300 350 400
Less SSRT (mS) More
Impulsive Impulsive

Increased connectivity from preSMA to STN; and modulation by inferior frontal
gyrus modulation predict shorter SSRTs (better response inhibition)

Rae et al., J Neurosci 2015



Reliability ?

Test same subjects same task 2 weeks apart
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Relative model evidences very reliable
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Rowe et al Neuroimage 2010



Reliability ?

Test same subjects same task 2 weeks apart
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Rowe et al Neuroimage 2010



M/EEG



MEG for dementia?

To open the bottleneck in drug development for dementia
To de-risk and accelerate early phase clinical trials

—2>With a new range of in vivo assays,

Sensitive to presence of disease
Sensitive to progression of disease

Elucidate disease mechanisms

A

Trial-ready eg. reliable, scalable



Test disease group: bv-FTD and PSP

Convergent phenotypes (Murley Brain 2020)
personality, impulsivity, apathy, social cognition
akinetic-rigidity, mixed movement disorder

poor survival (3-4 years from diagnosis)

AND convergent neurophysiology
(Sami Brain 2018; Hughes JOCN 2015; Cope J Neurosci 2022)



A brief history of MEG in dementia

* Sensitive and very well tolerated by patients
(Hughes et al Brain 2011; JoCN 2013, Neuroimage 2013)



A brief history of MEG in FTD/PSP

* Sensitive and very well tolerated by patients

* Convergent physiology, TF and functional connectivity
Sami et al Brain 2018 — Hughes et al Brain 2018



A brief history of MEG in FTD/PSP

* Sensitive and very well tolerated by patients
* Convergent physiology, TF and connectivity
* Validation of GABA-ergic deficits



Restoring GABA-ergic function

GABA: the principal inhibitory neurotransmitter reduced by frontotemporal dementia

and progressive supranuclear palsy

\T7

No. of GABRQ Neurons

in vivo spectroscopy by 7T

400 1

300

200

100 1

0-

Loss of GABA RQ neurons in PFC

Control

Calbindin
* % >
'« Control . bvFT
.‘n‘\‘: X ‘_-.‘o o'y
.4 .
<
C9-bvFTD

Murley et al, Brain 2020b

Murley and Rowe, Brain 2018
Gami-Patel et al, Neuropath Appl Neurop 2019



Restoring GABA-ergic function

GABA: in vivo quantification by sLaser MR Spectroscopy at 7T, with LC modelling

in vivi

2 * - ' , People with PSP or FTD type
) ? __ y o dementias are
s : AN (sometimes) deficient in
g 4 e prefrontal cortical GABA
< e This loss of inhibitory
g ol neurotransmission
— . correlates with impulsivity

nnnnn | ncNn/rrn

Can we restore functlon by enhancing
GABA in Frontotemporal dementia?

ividricy cu di, bidlill

2020b

Murley and Rowe, Brain 2018



Double-blind placebo controlled ph-MEG

Placebo vs Tiagabine 10mg (GABA reuptake inhibitor)

32 patients vs 20 matched controls
(note expected large effect sizes, d>1: power + range)

Elekta Vectorview 306 MEG

DEYV REP1 REP2 REP3 REP4 REP5
DEV REP1 REP2 REP3

F 3
—— —

DEV REP1 REP2

REPS

»Time

Frequency

Adams et al Brain 2021



Dynamic Causal Models
of human cognitive physiology

LFP = L(sp + ], *ss +]2 = dp)

Regions and Connections in the Dynamic Causal Model

+ gampaVampa — V)
+ 96a8aVgapa — V)
+ gnmpa MV)(Vnppa — V)]

dg. 1
dt 1, (Zk=sp,inh,dp,ss Hy oy, — g*) + U,

= [L, AMPA, GABA, NMDA]

A tractable canonical microcircuit model
of human cortex

Gilbert et al NI 2016, Symonds et al Brain 2018 (Ros Moran/Karl Friston)



Dynamic causal model

Extended 6-cell dynamic causal model of MMN network

First level inversion MEG to DCM, then second level group analysis

Adams et al Brain 2021
Adams et al J Neurosci 2020



Dynamic causal model

Extended 6-cell 6-region dynamic causal model of MMN network

e —————
= Lo

- -~ N

Unknowns within region

LFP signal (L, J; )

Intrinsic connections H

Time constants 7,

Membrane capacitance C

Firing thresholds parameters (S)
Mean exogenous input (E)
Delay (D)

Unknowns between region
Forward and backward

Neuronal noise terms
Channel noise terms (specific and common)

Adams et al Brain 2021
Adams et al J Neurosci 2020



Dynamic causal model

Extended 6-cell CMC dynamic causal model of MMN network; higher
model evidences than 4-cell CMC standard model

0 0.2 0.4 0.6 0.8 1
‘ "N N Correlf_trnan"p ,
~AaA -1 oA - j
IFG ~.* ' * {03
VN ®AA "\ Gt ' l |
/ ] {0.8
@A e - B — - S M @A -. :
a3 T3 | X
- ® N )
STG AL y d AA Patients (Nos ¢
x x | |05
~CAA CAAL -, (Mo.s
! Kot PSP :
Al | ¥
1.
PLAf A,
[CACE-NUNURS
Sh3zbE

Accurate generative model (high correlation with observed time series)

Adams et al Brain 2021
Adams et al J Neurosci 2020



Veracity of dynamic causal models of dementia? x3
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Frontal cognition (FAB)

Shaw et al, Cortex 2019; Adams et al J Neurosci 2020; Adams et al Brain 2021



How does Tiagabine work, and for whom?
(individual response predicted by 7T MRS)

77N
~AR -1 - o
IFG /s o
\,-A :‘A :" Zo— i T T - \. .‘A ;‘/
- 9 3
STG \A ‘A“. { A“
@ @
=X *x
)'.AA .AA R
Al ! X _/

MRSGABA
*(TGB-PLA)

The effect of a GABA-ergic reuptake inhibitor (Tiagabine)

To restore frontal lobe cognitive physiology
Depends on deep GABA-ergic interneurons

As a function of individual GABA levels

- Precision of pharmacology and phenotype

Phasic deep C-C pyr.

-1

GABA
From 7T MRS

Adams et al, Brain 2021

or now use “pe-DCM”s Adams BIOMAG poster 40/351



Dynamic causal models of disease”?

* %k 3k

> NN 3 S
8' .9 [
Q + 3
v © ’J_‘
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/"\ - m 8
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! \ = O oo¥
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\oa % Loss of synapses
AV ¥ Wt
Y 11C-UCBJ PET

Severe loss of GABA (sLaser) &

Murley et al Brain 2020; Malpetti et al unt



Pathology enriched Dynamic causal models

/’,
-3 7 .- \l
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Where is the impact of synaptic loss
within the cortical microcircuit?

Can we integrate PET into the DCM?

Adams et al under review; Shaw et al Cereb Cortex 2021



Pathology enriched Dynamic causal models
Can we integrate PET into the DCM?

First level DCM

' PET
Posterior estimate of parameters
‘ and first level model evidences
Model Space ) Second level
i group DCM (PEB)

roup DCM inversion inform
by PET as empirical prief

.

10 20 30 40 50 60

Model evidences re site of action -

Posterior estimate of parameters
Model prediction vs observed Adams et al under review; Shaw et al Cereb Cortex 2021



Pathology enriched Dynamic causal models

“where in the cortical microcircuit
N\ ﬁ— . .
N o (which neuron class, which neuro-
N

N > transmitter) does prior knowledge of
an individual’s synapse loss (PET)
ﬁ W% ﬁ improve the model evidence
(improve generative model to

reproduce the observed data better)”

Adams et al under review; Shaw et al Cereb Cortex 2021



Pathology enriched Dynamic causal models

“where in the cortical microcircuit
N\ ﬁ— . )
N o (which neuron class, which neuro-
N

N\ > transmitter) does prior knowledge of
an individual’s synapse loss (PET)
ﬁ improve the model evidence
(improve generative model to

reproduce the observed data better)”

A B  Correlation between
04 Deviant Trial 0.4 Standard trial observed and predicted ERFs

12

c 8
o
o 6
S
4
L “'. . I',I | 5
04 VEBEmeniE 04 \/SREmemAT, ol = r‘
0 100 200 300 400 O 100 200 300 400 0 02 04 06 08 1
time (ms) time (ms) Pearson correlation

Adams et al under review; Shaw et al Cereb Cortex 2021



Pathology enriched Dynamic causal models

The model comparison
suggests loss of synapses
(UCBJ PET) affects the MEG
generators (DCM) at the level ">

SIS

of superficial pyramidal cells o

See Amirhossein Jafarian BIOMAG 2022 02-351
Adams et al under review; Shaw et al Cereb Cortex 2021



Pathology enriched Dynamic causal models
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> model comparison

-BJ PET) affects the MEG
erators (DCM) at the level
superficial pyramidal cells

Y

See Amirhossein Jafarian BIOMAG 2022 02-351
Adams et al Brain 2022; Shaw et al Cereb Cortex 2021



Pathology enriched Dynamic causal models

BB Layer -
% Layer IV-V]
100 — o _ The model comparison
. suggests loss of synapses

> 80 Z
@ (UCBJ PET) affects the MEG 2
3 60+ generators (DCM) at the level ">
-fcel 40 | of superficial pyramidal cels B
©
c
@ 20 - :

0 7

Frontal |

Synaptophysin reduced
in superficial layers
frontal cortex in FTD
At post mortem

Brun et al Neurodegeneration, 1995
Liu et al Dement Geriatr Cogn Disord 1999
Adams et al under review; Shaw et al Cereb Cortex 2021



Pathology enriched Dynamic causal models

7))

[
Highly reliable in S 120,
split sample analysis = 108
r2 ~0.95 for ° 80

L

L. 60 |
Free energy =
(for hypothesis testing £ 40
by model selection) LI'J 20 |

i

‘ L L X X L "
0 2040 60 80100120
FE - min(FE) even trials

Adams et al Brain 2022; Shaw et al Cereb Cortex 2021



MEG bridge to disease models

New Therapeutics in Alzheimer’s disease % Dementias
, N Platform*

50*AD/MCI (amyloid positive) vs 15 controls

Roving auditory mismatch

0.1

v ° WN |
2 -0t e
O o2}
Q \
§ 0al \\W
< 4T Follow up +16 m
B -0.5 |
e osf Controls
.(i) 0.7
E 0.8
-0.9

i 1 1 1 1 ]
-100 0] 100 200 300 400

Lanskey et al BIBOMAG Tuesday 12:30 09-541



Dynamic Causal Models of
human cognitive physiology

Mismatch response

convolution-based, mean-field neural mass model

Shaw et al Cereb Cortex 2021; (after Ros Moran/Karl Friston)



Dynamic Causal Models of
t, = =, human cognitive physiology

layer 2/3
= KU — 2Kz; — K%z,

un;"’ {\;4);!},::

U=Sd+H+E

v
> 5
oL
£ 3
2E
£ 8

£

convolution-based, mean-field neural
mass model; with voltage (x,) and
current (x;), K rate-constant; S extrinsic
projections(s) to the layer; d is the
presynaptic firing (sigmoid activation
function); H sum of postsynaptic-currents
Shaw et al Cereb Cortex 2021; (after Ros Moran/Karl Friston)




Can MEG build bridges to disease models?

s 0.6

B 0.4 I

é 0.2 l - |
1 é: 0 I :|n|1;-__quc.pc.nmm
% 0.2 2t scopolamine
IR

4-cell convolution model
of cortical microcircuits Lanskey et al BIOMAG Tuesday 12:30 09-541

Schobi et al. Neuroimage 2021; 237



Can MEG build bridges to disease models?

(controls vs patients, after BMR)

A II I )

-1.2

<o

1.4 ! ! ! 1

Al STG IFG IPC Al STG IFG IPC

Region

Left Right

Change in Superficial pyramidal cell gain

4-cell convolution model
of cortical microcircuits
With PEB of DCM



Can MEG build bridges to disease models?

Related to pTau-181 level (after BMR)

e N |

-0.6 -

c

-0.8

-l.2

-1.4 1 1 1 | 1 1 1

Al STG  IFG IPC Al STG IFG IPC
Left Right

Change in Superficial pyramidal cell gain

4-cell convolution model
of cortical microcircuits
With PEB of DCM



s DCM with MEG reliable?

“if 1 did the same experiment again would | get the
same answer?”

Frequentist correlations, ICC etc

- problematic in multivariate complex models
Model Selection
PEB contrast



s DCM with MEG reliable?

A hierarchy of expectation:

Same site, same subjects, same session, different trials
Same site, same subjects, different sessions

Same site, different subjects

Different site



s DCM with MEG reliable?

DCM for CSD (MEG) at rest in Alzheimer’s disease

Amir Jafarian et al Subm



(a) Cortical Column

k“ A\ ald
3s. Spiny stellate cells
sp. Superficial pyramidal celis

n. Inhibitory Interneurons
dp: Deep pyramidal cells

(b) Mesoscale model

(b) Default mode network
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summary:
DCM in the family of brain connectivity methods

Connectivity

SEM
Functional Effective
Coherence Granger
Correlations DCMs
CCA/ICA PPl
iIEEG fMRI
M/EEG

Graph metrics

Convolution Conductance



Summary
To de-risk and accelerate early phase clinical
trials with new MEG assays ....

1. Sensitive to presence of disease



Summary

To de-risk and accelerate early phase clinical
trials with new MEG assays ....

1. Sensitive to presence of disease (AD, PSP, FTD, PD)
2. Sensitive to progression of disease (AD)



Summary

To de-risk and accelerate early phase clinical
trials with new MEG assays ....

1. Sensitive to presence of disease
2. Sensitive to progression of disease

3. Elucidate disease mechanisms (DCM) 100%
| R e
A N 2z 80 - 7
g 8 60 —
— : E o _§- i
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Summary

To de-risk and accelerate early phase clinical
trials with new MEG assays ....

1. Sensitive to presence of disease
2. Sensitive to progression of disease

3. Elucidate disease mechanisms
4. Trial-ready eg. reliable, scalable, sensitive to drug
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Why choose Dynamic causal modelling ?

. models interactions at the neuronal (not haemodynamic or sensor/Ifp level).

. can include complex networks, reciprocal connections and loops, biologically
plausible systems with feedforward and feedback connectivity....
THEORETICAL AND ANATOMICAL MOTIVATION

. can compare models/networks (Bayesian model selection)

nested and non-nested models, families of models,

use Free energy estimate of model evidence (adjusted for complexity)
DESIGN YOUR STUDY AND FRAME HYPOTHESES WITH BMS IN MIND

. applies to single subjects, heterogenous groups, & interventions

. is easy to use and simple to understand...
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a) Grey and white matter atrophy in bvFTD ¢) Model of task related

d) Schematic framework for

b Laminat.speciiicpathiology In bvFLD laminar oscillatory connectivity




e) Hypothesis

Burden of pathology in superficial
prefrontal layers

Disrupted Beta <-> Gamma
coupling between frontal regions

|

Attenuated Movement Related
Beta desynchronization

|

Impaired movement control
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C)Controls: NoGo vs Go trials All trials - FTD loss of connectivity of the
inferior frontal gyrus, particularly for
gamma band interactions and theta to
alpha coupling. Gamma connectivity
between preSMA and motor cortex was
enhanced.

NoGo vs Go: In controls, M1 greater
beta/gamma coupling from IFG and
preSMA, and from IFG to preSMA (top).

In FTD (bottom), a distinct loss of this
coupling from IFG to preSMA and M1.
Reciprocal frequency couplings are
reduced.

FTD Note increase in positive and
negative gamma to gamma coupling
between preSMA and M1, and

The self-connections (not shown) also
reveal a beta desynchronization by theta
and alpha to beta couplings, which are
diminished in patients.

Hughes et al, Brain 2018






