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ABSTRACT
Diffusion Magnetic Resonance Imaging (dMRI) is sensitive to white matter microstructural changes across the 
human lifespan. Several models have been proposed to provide more sensitive and specific metrics than those 
provided by the conventional Diffusion Tensor Imaging (DTI) analysis. However, previous results using different 
metrics have led to contradictory conclusions regarding the effect of age on fibre demyelination and axonal loss 
in adults. Moreover, it remains unclear whether these metrics provide distinct information about the effects of age, 
for example, on different white- matter tracts. To address this, we analysed dMRI data from 651 adults approxi-
mately uniformly aged from 18 to 88 years in the Cambridge Centre for Ageing and Neuroscience (Cam- CAN) 
cohort, using six dMRI metrics: Fractional Anisotropy (FA) from standard DTI; Mean Signal Diffusion (MSD) and 
Mean Signal Kurtosis (MSK) from Diffusional Kurtosis Imaging (DKI) applied to directional averaged diffusion- 
weighted signals; and Neurite Density Index (NDI), Orientation Dispersion Index (ODI), and isotropic Free water 
volume fraction (Fiso) estimated from Neurite Orientation Dispersion and Density Imaging (NODDI). Averaging 
across white- matter regions- of- interest (ROIs), second- order polynomial fits revealed that MSD, MSK, and Fiso 
showed the strongest effects of age, with significant quadratic components suggesting more rapid and some-
times inverted effects in old age. Analysing the data in different age subgroups revealed that some apparent dis-
crepancies in previous studies may be explained by the use of cohorts with different age ranges. Factor analysis 
of the six metrics across all ROIs revealed three independent factors that can be associated to 1) tissue micro-
scopic properties (e.g., differences in fibre density/myelin), 2) free- water contamination, and 3) tissue configura-
tion complexity (e.g., crossing, dispersing, fanning fibres). While FA captures a combination of different factors, 
other dMRI metrics are strongly aligned to specific factors (NDI and MSK with Factor 1, Fiso with Factor 2, and ODI 
with Factor 3). To assess whether directional diffusion and kurtosis quantities provide additional information about 
the effects of age, further factor analyses were also performed, which showed that additional information about 
the effects of age may be present in radial and axial kurtosis estimates (but not standard axial and radial diffusiv-
ity). In summary, our study offers an explanation for previous discrepancies reported in dMRI ageing studies and 
provides further insights on the interpretation of different dMRI metrics in the context of white- matter microstruc-
tural properties.
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1. INTRODUCTION

Brain structure is known to change with age at many spa-
tial scales. For instance, studies using conventional 
structural imaging techniques have shown that the vol-
ume of White Matter (WM) in many brain regions signifi-
cantly decreases after the fifth decade of life ( Bethlehem 
 et  al.,  2022;  Lebel  et  al.,  2012;  Walhovd  et  al.,  2011). 
These gross morphological changes are likely to be a 
consequence of earlier microstructural alterations, such 
as cell loss, fibre loss, demyelination, and increases of 
extra- cellular space ( Aboitiz  et  al.,  1996;  Geula  and 
 Mesulam,  1989;  Meier‐Ruge  et  al.,  1992;  Pyapali  and 
 Turner,  1996;  Scheltens  et al.,  1995), which are beyond 
the direct resolution limit of current magnetic resonance 
imaging (MRI). Fortunately, MRI can also be used to mea-
sure water diffusion in vivo— a modality known as diffu-
sion MRI (dMRI). Since diffusion results in displacements 
of water molecules at a micrometric scale (during the 
timescales of typical MRI), dMRI can provide information 
at a scale below the dimension of its image voxels ( Le 
 Bihan  and  Johansen- Berg,  2012;  Moseley,  2002). Previ-
ous studies have, indeed, shown that microstructural 
alterations measured by dMRI could occur before 
changes are observed on more conventional structural 
MRI contrasts ( Maillard  et  al.,  2013;  Nusbaum  et  al., 
 2001;  Pelletier  et al.,  2017).

The information captured by dMRI maps is multi- 
dimensional, and several models have been proposed to 
quantify different properties from dMRI images. Phenom-
enological dMRI models such as diffusion tensor imaging 
(DTI) and diffusional kurtosis imaging (DKI) can be used 
to summarise diffusion properties that can be indirectly 
related to properties of tissue microstructure ( Basser 
 et  al.,  1994;  Jensen  and  Helpern,  2010;  Jensen  et  al., 
 2005). Early human ageing studies using DTI showed that 
the anisotropy of diffusion in brain WM starts declining 
after the first two decades of life ( Davis  et al.,  2009;  Lebel 
 et al.,  2012;  Pfefferbaum  et al.,  2000;  Sullivan  et al.,  2001; 
 Yeatman  et  al.,  2014;  Zhang  et  al.,  2010). These initial 
declines were assumed to be associated with degenera-
tive processes such as fibre demyelination and axonal 
loss. Studies using DKI showed that the degree of non- 
Gaussian diffusion increases up to the fifth decade of life 
( Coutu  et  al.,  2014;  Das  et  al.,  2017;  Falangola  et  al., 
 2008;  Gong  et al.,  2014;  Lätt  et al.,  2013). Since increased 
degree of non- Gaussian diffusion has been associated 
with WM maturation processes ( Helpern  et  al.,  2011; 
 Jensen  and  Helpern,  2010;  Paydar  et  al.,  2014), these 
DKI results are difficult to reconcile with the degeneration 

suggested by DTI anisotropy metrics. However, since DKI 
relies on subtle information from the non- linear behaviour 
of the log diffusion signal decay, the age- related profile 
provided by standard DKI metrics can be highly cor-
rupted by thermal noise ( Billiet  et  al.,  2015;  Henriques, 
 Jespersen,  et  al.,  2021;  Tax  et  al.,  2015;  Veraart  et  al., 
 2011). Moreover, like any other phenomenological mod-
els, the interpretation of differences in DKI metrics is lim-
ited since they do not provide a direct link to specific 
microstructural properties.

Several more neuroanatomically inspired models (also 
referred to as “mechanistic” or “microstructural” models, 
 Novikov  et al.,  2018) have been proposed as an attempt to 
directly estimate specific tissue properties from diffusion- 
weighted images (e.g.,  Assaf  and  Basser,  2005;  Assaf  et al., 
 2004;  Fieremans  et al.,  2011;  Huber  et al.,  2019;  Jespersen 
 et al.,  2007;  Rokem  et al.,  2015;  White  et al.,  2013). One of 
the most popular microstructural models used in clinical 
research is the “Neurite Orientation Dispersion and Density 
Imaging” (NODDI) model ( Zhang  et  al.,  2012). This has 
been used to estimate the degree of fibre dispersion (the 
“Orientation Dispersion Index", ODI) and neurite density 
(the “Neurite Density Index”, NDI) in the context of ageing 
(e.g.,  Billiet  et  al.,  2015;  Chang  et  al.,  2015;  Kodiweera 
 et  al.,  2016). These studies generally showed that early 
declines in diffusion anisotropy are most likely due to 
increase of fibre dispersion (as measured by ODI). How-
ever, these studies also produced some inconsistencies. 
For example, while positive correlations between NDI and 
age were reported in some studies ( Billiet  et  al.,  2015; 
 Chang  et al.,  2015), supporting the previous late maturation 
processes measured by DKI, negative correlations were 
reported by others ( Cox  et al.,  2016;  Merluzzi  et al.,  2016). 
These discrepancies may be a consequence of the low 
number of participants and/or variable age ranges used 
across these studies.

In an attempt to address this issue,  Beck  and  colleagues 
 (2021) compared a number of different dMRI techniques 
on a larger cohort of subjects covering the adult lifespan 
(18- 94 years old) and found that the rates of change in DKI 
and NODDI metrics depended on age. However, their 
dMRI metrics were compared in terms of their average 
value across a whole- brain WM skeleton. The question of 
whether various metrics provide complementary infor-
mation might vary across different WM tracts, depending 
on, for example, their degree of crossing fibres or proxim-
ity to ventricles. For example, the corona radiata have 
many crossing fibres, whereas the corpus callosum does 
not; and tracts such as the fornix will be more affected by 
free- water contamination. Furthermore, the question of 
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whether dMRI metrics provide complementary information 
can also be addressed formally by principal component 
analysis (PCA). For example,  Chamberland  and  colleagues 
 (2019) found that only two principal components were 
necessary to capture most of the covariance between 10 
dMRI metrics in a developmental dataset of 36 people 
aged 8- 18 years. Their first component captured proper-
ties related to hindrance and restriction in tissue micro-
structure, while their second component captured 
properties related to tissue configuration complexity (i.e., 
fibre crossing and dispersion effects). Here, we perform a 
similar PCA, followed by axes rotation (i.e., Factor Analy-
sis), of different dMRI metrics, but now on a much larger, 
adult sample.

In summary, we compared the sensitivity to age of the 
main metrics from phenomenological and microstructural 
models of dMRI, using a large and homogeneous sample 
across the adult lifespan, namely from the Cambridge 
Centre for Ageing and Neuroscience (Cam- CAN) cohort 
( Shafto  et  al.,  2014;  Taylor  et  al.,  2017). Stage 2 of this 
cohort includes dMRI data from 651 participants aged 
approximately uniformly from 18 to 88  years. Because 
these individuals were recruited via local doctors using an 
opt- out procedure (before being screened for possible 
dementia or brain damage), they are likely to be more rep-
resentative of the effects of age than studies that recruit via 
advertisement (e.g., which tend to recruit super- healthy 
older people). As well as potentially resolving the inconsis-
tencies in previous studies of ageing, we examined how 
different dMRI metrics vary across different subgroups of 
age, across WM tracts, and also how they covaried across 
individuals in terms of underlying factors.

2. METHODS

2.1. Data acquisition

Approval for the Cam- CAN study was granted by the 
Research Ethics Committee of Cambridgeshire 2 (now 
known as East of England— Cambridge Central). Prior to 
their involvement, participants provided written, informed 
consent. The data repository of Cam- CAN contains 651 
complete diffusion- weighted datasets for healthy partici-
pants (319 males/332 females) with ages between 18 and 
88 years ( Taylor  et al.,  2017). These healthy participants 
were selected from 2681 interviewed participants with no 
serious psychiatric problems ( Shafto  et al.,  2014;  Taylor 
 et al.,  2017). Diffusion- weighted datasets were acquired 
on a 3 T Siemens Trio Scanner (32- channel head coil) for 
two non- zero b- values (1000 and 2000 s/mm2) along 30 

diffusion gradient directions and for three b = 0 volumes. 
A twice refocused spin echo (TRSE) echo- planar imaging 
sequence was used for eddy- current artefact reduction 
( Reese  et al.,  2003). Other acquisition parameters were 
as follows: 66 axial slices, voxel size = 2 ×  2 ×  2 mm, 
TR = 9100 ms, TE = 104 ms, matrix = 96 × 96, field of 
view (FOV) = 192 × 192 mm2, partial Fourier of 7/8, and 
acceleration factor of 2 using GRAPPA with 36 reference 
lines. More information about diffusion MRI acquisitions 
is reported in  Taylor  et al.  (2017).

2.2. Data quality control

The quality of the diffusion- weighted datasets was first 
visually inspected ( Tournier  et al.,  2011). Based on this, 
two datasets were excluded: one because no anatomical 
information was acquired due to an acquisition failure 
and another because of abnormal cerebral ventricle 
sizes. In addition, 11 datasets were excluded because 
they possessed more than four volumes of diffusion- 
weighted images that were corrupted by motion- induced 
artefacts (i.e., image slice signal loss and “striping” pat-
tern artefacts induced by motion during the acquisition of 
a single diffusion- weighted image ( Tournier  et al.,  2011)). 
The number of diffusion- weighted volumes corrupted by 
motion- induced artifacts was quantified using the proce-
dure described in Supplementary Material Appendix A. A 
summary of the total number of included and excluded 
datasets for different participant age subgroups is pre-
sented in Table 1.

2.3. Data pre- processing

Diffusion- weighted data were first denoised using a PCA- 
based algorithm ( Veraart  et al.,  2016) and then corrected 
for Gibbs artefacts using a sub- voxel shift procedure 
( Kellner  et al.,  2016). Then, data and respective gradient 
directions were corrected for motion misalignments using 
an adapted version of a procedure designed for high 
b- value diffusion- weighted images ( Ben- Amitay  et  al., 
 2012), details of which are described in Supplementary 
Material Appendix B. After motion correction, non- brain 
voxels of processed datasets were removed using the 
brain extraction procedure of the FSL toolbox ( Jenkinson 
 et al.,  2012;  Smith,  2002). Note that diffusion- weighted 
data were not corrected for eddy current artefacts since 
these were minimised during data acquisition by using 
the TRSE sequence ( Reese  et  al.,  2003). Further pre- 
processing steps to minimise eddy- currents and suscep-
tibility artefacts were not applied due to the absence of 
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additional data required for efficient correction in the 
Cam- CAN project, for example, acquisition of data with 
reversed phase- encoding directions ( Tax  et al.,  2022).

2.4. Diffusion MRI techniques

We focused on three dMRI models: 1) Diffusion Tensor 
Imaging (DTI)— the conventional, phenomenological dMRI 
technique; 2) Diffusional Kurtosis Imaging (DKI)— the next 
most used phenomenological model beyond DTI; and 3) 
the Neurite Orientation Dispersion and Density Imaging 
(NODDI)— the most common microstructural model. All 
models were fit in the native space of each participant (to 
decrease image artefact propagation due to data interpo-
lation). Details of each dMRI model are reported below.

2.4.1. Diffusion tensor imaging

DTI was estimated using a non- linear, least- square solution 
( Jones  and  Basser,  2004;  Koay  et al.,  2006) implemented 
on the open- source software package Diffusion Imaging in 
Python ( Garyfallidis  et al.,  2014;  Henriques,  Correia,  et al., 
 2021). Only the conventional fractional anisotropy (FA) met-
ric was estimated from the tensor; other diffusion metrics 
were extracted using the DKI model to remove effects from 
higher- order kurtosis terms ( Henriques,  Correia,  et  al., 
 2021;  Taha  et al.,  2022;  Veraart  et al.,  2011).

2.4.2. Diffusional kurtosis imaging

In this study, we first focus on two directionally averaged 
DKI estimates that are invariant to different WM configu-
rations (i.e., invariant to presence of crossing fibres or to 
the degree of fibre dispersion and fanning). For this, mean 
signal diffusion (MSD) and mean signal kurtosis (MSK) 
were directly extracted from averaged signals across dif-
ferent gradient directions ( Henriques,  Correia,  et  al., 
 2021;  Henriques,  Jespersen,  et  al.,  2021;  Henriques 
 et al.,  2019):

Table 1. Number of included and excluded diffusion- weighted datasets for different participant age subgroups.

Age (years)
Decile 1 
(18- 27)

Decile 2 
(28- 37)

Decile 3 
(38- 47)

Decile 4 
(48- 57)

Decile 5 
(58- 67)

Decile 6 
(68- 77)

Decile 7 
(78- 88) Total

Incl. data M 22 50 43 51 47 46 50 309
F 27 56 51 48 50 52 43 327

Total 49 106 94 99 97 98 93 636
Excl. data M 2 0 1 0 1 3 3 10

F 1 0 0 0 1 0 1 3
Total 3 0 1 0 2 3 4 13

logS(b) / S0 = −bMSD + 1
6
b2MSD2MSK +O b3( )  (1)

where S b( ) represents the mean diffusion- weighted sig-
nals (signals averaged along different diffusion gradient 
directions for each individual b- value separately), and S0 
represents the mean signal for b- value = 0. While MSD is 
equivalent to the standard mean diffusion (MD) computed 
from DKI, MSK provides similar results to the standard 
mean kurtosis (MK) index; however, mean signal esti-
mates have the advantage of being more robust to ther-
mal noise effects and invariant to different WM fibre 
configurations ( Henriques,  Correia,  et al.,  2021;  Henriques 
 et  al.,  2019). For the present study, Equation  1 was fit 
using the weighted linear least- squares (WLLS) approach 
described by  Henriques,  Correia,  et al.  (2021).

In addition to MSD and MSK, the following standard 
DKI metrics were also computed from the full fitted diffu-
sion and kurtosis tensor using the WLLS fitting routine 
available in DIPY ( Garyfallidis  et  al.,  2014;  Henriques, 
 Correia,  et al.,  2021): mean diffusivity (MD); radial diffu-
sivity (RD); axial diffusivity (AD); mean kurtosis (MK); 
radial kurtosis (RK); and axial kurtosis (AK). Note that 
these extra diffusion metrics were only used for extra- 
factor analyses (c.f. end of section 2.5).

2.4.3. Neurite orientation dispersion and density imaging

The NODDI model is a three- compartment model that 
was designed to estimate the NDI and ODI, while con-
straining all compartments’ diffusivities to fixed priors to 
ensure model fit stability ( Zhang  et  al.,  2012). NODDI’s 
model can be written as:

S(n,b) / S0 = (1− Fiso )[FiaEia(n,b) + (1− Fia )Eea(n,b)]
+ FisoEiso(b)  (2)

with Fia being the intra- axonal volume fraction (i.e., Fia = 
NDI), Eia the intra- axonal signal attenuation, and Eea the 
extra- axonal signal attenuation. Note that this model also 
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this purpose, WM ROIs were warped from an FA template 
to each native FA map, using FSL’s linear and non- linear 
registration tools ( Jenkinson  et al.,  2012;  Smith  et al.,  2004; 
 Woolrich  et al.,  2009). To suppress the impact of cerebral 
spinal fluid (CSF) free- water partial volume effects (and to 
minimise the impact of degenerative ODI and NDI esti-
mates on voxels containing most free water), voxels with 
Fiso values larger than 0.9 were removed from the ROIs.

2.5.2. Global WM analysis

For global analysis, we averaged the six main diffusion 
metrics (FA, MSD, MSK, NDI, ODI, Fiso) across all voxels 
in all ROIs. We then fit a second- order polynomial expan-
sion of age (i.e., linear and quadratic terms), together with 
covariates of sex and the interaction between sex and 
polynomial age terms. For this analysis, we removed five 
participants whose residuals from this model were more 
than 5 standard deviations from the mean in at least one 
of the six dMRI metrics. Their ages were 30, 44, 45, 78, 
and 85 years (i.e., not particularly biased to certain ages). 
We then refit the polynomial model and reported the 
proportion of variance explained by each effect.

2.5.3. ROI- specific analysis

To reduce the number of comparisons, we averaged the 
six main diffusion metrics across those pairs of ROIs that 
were homologous across hemispheres, leading to a total 
of 27 ROIs remaining. We then Z- scored the values 
across participants for each ROI and metric. For each 
metric, we examined the distribution of resulting values 
(concatenated across ROI and participants) and removed 
participants whose data included a value more than five 
standard deviations from the mean. This was done to 
minimise the influence of extreme values on the PCA 
below, and resulted in removal of 20 participants, who 
tended to be either younger or older than the median age 
(6 were 45 or under, and 16 were 68 or over), that is, 
unlikely to systematically bias subsequent analyses 
towards young or older groups. This left 618 participants. 
The proportion of variance (R2) explained by the linear 
and quadratic terms of a second- order polynomial 
expansion of age was calculated for each ROI and each 
metric, and then the ROIs ranked by this proportion.

2.5.4. Age correlations for each ROI in different age subgroups

This analysis was performed to assess the dependency 
of (linear) correlations between each metric and age 

considered a third compartment to capture effects of iso-
tropic diffusion of free water, with Fiso and Eiso representing 
its apparent volume fraction and signal attenuation. The 
signal attenuations for each compartment are given by:

  
Eia n,b( ) = f u( )exp −bd ! n

Tu( )2⎡
⎣⎢

⎤
⎦⎥
dΩu∫  

(3)

 Eea n,b( ) = exp −bnT f (u)De (u)dΩu∫( )n⎡
⎣⎢

⎤
⎦⎥  (4)

 Eiso b( ) = exp −bDiso( )  (5)

where d! is the intrinsic axonal diffusivity, set to 1.7 µm2/
ms; De (u)  is an axial symmetric tensor parallel to vector 
u, with axial and radial diffusivities equal to d! and 
d⊥ = d! 1− fia( ); Diso is the isotropic- free water diffusivity 
at the body temperature of 37oC, set to 3 µm2/ms; f  is 

the fibre orientation distribution function, which is ass-

umed to follow a Watson distribution f (n) = 1F1
1
2
,
3
2
,k⎛

⎝⎜
⎞
⎠⎟
−1

exp −k µµTn( )2⎡
⎣⎢

⎤
⎦⎥
, where 1F1 is the confluent hypergeomet-

ric function of the first kind; µµ is the fibre average direct-
ion; and k is a metric related to ODI (ODI =2arctan 1 κ( ) /π;  
 Jespersen  et  al.,  2012) Jespersen  et  al.,  2012). Here, 
NODDI was fit using the original implementation ava-
ilable at: http://www . nitrc . org / projects / noddi _ toolbox 
(NODDI toolbox version 0.9).

In summary, we first compared six dMRI metrics: 1) FA 
(from DTI); 2- 3) MSD and MSK (from DKI fitted in direc-
tionally averaged signals); and 4- 6) ODI, NDI, and Fiso 
(from NODDI). Additional analyses were also performed 
considering six additional metrics (MD, RD, AD, MK, RK, 
AK) computed from standard DKI tensor fitting.

2.5. Data analysis

The diffusion metric values for each participant and metric 
are available in the CSV files “Global_Metrics.csv” (aver-
aged across WM voxels) and “ROI_Metrics.csv” (sepa-
rately for each ROI) here: https://github . com / RafaelNH 
/ CamCAN - dMRI - study. Matlab code for the statistical 
analysis can also be found here, in “main_dMRI_stats_
analysis.m”.

2.5.1. Region of interest (ROI) definition

The values of diffusion- based metrics were averaged 
across voxels for each of the 48 WM ROIs included in the 
Johns Hopkins University (JHU) atlas ( Mori  et al.,  2008). For 
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across different age ranges. For this, correlations were 
calculated for three different age subgroups with similar 
number of participants (approximately 200): participants 
aged 1) from 28 to 47 years; 2) from 48 to 67 years; and 
3) from 68 to 87 years. To decrease the number of false 
positives, the false discovery rate (FDR) for the resulting 
3 x 6 x 27 = 486 tests was controlled at q = 0.05 ( Benjamini 
 and  Hochberg,  1995).

2.5.5. Correlation between metrics and factor analysis

The six metrics were concatenated across participant 
and ROIs (i.e., 15,450 observations per metric) and the 
Pearson correlation between each pair of them calcu-
lated before and after regressing out linear and quadratic 
effects of age. Principal Component Analysis (PCA) was 
then applied to the same matrix. Three PCs captured 
over 96% of the variance (see section 3). Factor analysis 
was then applied by rotating three orthogonal axes to 
maximise the squared loadings (“Varimax”).

2.5.6. Factor analysis with added diffusion metrics

To assess whether directional diffusion and kurtosis 
quantities provide additional information about the effects 
of age, additional factor analysis was also performed by 
including standard MD, RD, AD, MK, RK, and AK metrics 
from DKI tensor fitting. To mitigate the impact of high- 
magnitude implausible kurtosis estimates in DKI tensor 
fitting ( Henriques,  Jespersen,  et al.,  2021;  Tabesh  et al., 
 2011), MK, RK, and RK values were extracted as the 
median from all voxels for each WM ROI.

3. RESULTS

3.1. Representative dMRI maps

For a qualitative inspection of the quality of the different 
diffusion MRI metrics, representative maps of the six 
main diffusion MRI metrics considered in this study (FA, 
MSD, MSK, NDI, ODI, and Fiso) are shown in Figure 1 for 
two young adults (26 and 25 years old, panels A and B) 
and for two elders (79 years old, panels C and D). In gen-
eral, all diffusion metrics show the contrasts expected 
from previous literature (e.g., WM regions characterised 
by higher values for FA, MSK, and NDI, and lower values 
of ODI, when compared to grey matter). MSK estimates 
in WM do not reveal the implausible negative kurtosis 
estimates reported in previous literature (e.g.,  Henriques, 
 Jespersen,  et  al.,  2021;  Tabesh  et  al.,  2011). Diffusion 

MRI maps for elders show enlarged ventricles (as high-
lighted by wider areas of MSD  ≈  3  µm2/ms and wider 
areas of Fiso ≈ 1 in panels C and D) and thinner WM fibre 
bundles (as revealed by the narrow WM areas in FA, 
MSK, and NDI maps in panels C and D). Analogous 
maps for the six additional standard DKI metrics (MD, 
RD, AD, MK, RK, AK) are shown in Supplementary 
 Material Appendix D.

3.2. Global white- matter dMRI age profiles

The mean diffusion metrics computed as the average 
across the voxels of all WM ROIs are plotted for each 
metric as a function of age in Figure 2. FA estimates show 
a linear decline, with age accounting for approximately 
20% of its variance. MSD shows a positively- accelerated 
effect of age (with 41% of its variance explained by a 
linear effect, and a further 13% by a quadratic effect), 
with large increases after 60 years of age. MSK shows a 
negatively- accelerated effect of age, with a linear effect 
explaining 25% of its variance, and a quadratic effect 
explaining an additional 9%, with large decreases after 
60 years of age. For the NODDI metrics, NDI also shows 
a large negatively- accelerated effect, with a linear effect 
explaining 14% of its variance and a quadratic effect 
explaining an additional 7%. In contrast, ODI shows only 
a modest age effect, with a linear effect accounting for 
1% of its variance and a quadratic effect accounting for 
an additional 5%. Fiso shows an accelerated increase with 
age, with linear and quadratic terms explaining 27% and 
4% of its variance, respectively. Most metrics show a small 
effect of sex (approximately 1% of variance) and negligible 
evidence that the effects of age depended on sex (with 
linear and quadratic interactions explaining <1%). We 
therefore drop the sex variable in subsequent analyses.

3.3. Regional white- matter dMRI age effects

When splitting the dMRI metrics according to ROI, the 
resulting R2 values for the second- order polynomial effect 
of age are shown in Figure 3. The ROIs are ordered (top- 
down) according to their mean R2 values across metrics. 
As expected from the global effects in Figure 2, the MSD, 
MSK, and Fiso metrics tend to show stronger age effects 
across ROIs than the other three metrics, though there 
are exceptions: for example, the superior cerebellar 
peduncle shows stronger effects of age on FA and ODI. 
Age exerted the biggest effect on: a) anterior brain ROIs 
such as the Anterior Corona Radiata, Fornix (Column + 
Body), Corpus Callosum Genu, and the Anterior Portion 
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of the Internal Capsule; and b) superior brain ROIs such 
as the Superior Fronto- Occipital Fasciculus and Superior 
Corona Radiata. The smallest age effects are observed 
on the Cerebellar and Cerebral Peduncles, Corticospinal 
Tracts, Pontine Crossing Tracts, and Medial Lemniscus.

3.4. Regional white- matter dMRI age profiles

To further explore the different, nonlinear patterns of age 
effects across ROIs and the effects of selecting specific 
age ranges, Figure 4 shows linear effects of age for each 
of the six diffusion metrics across three different age sub-
groups: 1) subjects aged between 28 and 47  years; 2) 
subjects aged between 48 and 67 years; and 3) subject 

aged between 68 and 87  years. ROIs with significant 
(FDR- corrected) negative and positive effects of age are 
colour- coded by blue and red intensities respectively, 
while ROIs with non- significant effects are shown in 
green. For a reference, the dMRI age profiles across the 
full age range of the Cam- CAN cohort of subjects for 
selected WM ROIs are shown in Supplementary Material 
Appendix C.

Different age effects across ROIs are apparent from 
differences across age subgroups in the linear effect of 
age within each subgroup. For instance, significant FA 
declines of the Internal Capsule Posterior Limb are only 
observed for the youngest group (Fig. 4A1), significant 
FA declines of the External Capsule and Hippocampus 

Fig. 1. Representative maps of the six diffusion MRI metrics (FA, MSD, MSK, NDI, ODI, Fiso) for two young adults (26 and 
25 years old, panels A and B) and for two elders (79 years old, panels C and D). Implausible NODDI estimates in regions 
containing brain ventricles are removed by setting NDI to 0 and ODI to 1 for voxels with Fiso > 0.9 (note that estimating NDI 
and ODI is degenerate for Fiso ≈ 1, c.f. Eq. 2).
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Cingulum are only observed for the middle- aged group 
(Fig.  4A2), while significant FA declines in the Corpus 
Callosum Body and Splenium, Anterior portion of Inter-
nal Capsule, Superior Fronto- Occipital Fasciculus, and 
Cingulum Cingulate Gyrus are only observed in the old-
est subgroup (Fig. 4A3).

MSD shows the strongest effects of age in the oldest 
subgroup across a large number of ROIs (Fig. 4B3). For 
MSK, positive age effects are observed for the External 
Capsule and the Anterior limb of the Internal Capsule for 
the youngest subgroup (Fig. 4C1), while declines in the 
middle- aged subgroup are only observed in WM ROIs 
(Fig. 4C2) like the Corpus Callosum Genu, the Retrolen-
ticular portion of the Internal Capsule, the Anterior, 
Superior, and Posterior Corona Radiata, the Posterior 
Thalamic Radiation, Sagittal Stratum, Cingulum Cingu-
late Gyrus, Fornix Stria Terminalis, the Superior Longitu-
dinal Fasciculus, and the Superior Fronto- Occipital 
Fasciculus, and the Tapetum. For the oldest age group, 

almost all WM ROIs show negative MSK variation rates 
(Fig. 4C3).

NDI shows similar trends to MSK in most of the WM 
ROIs. For example, like MSK, positive and negative NDI 
rates are observed in the Internal Capsule Anterior limb 
and Uncinate Fasciculus for the younger age group 
(Fig. 4D1), while significant NDI decreases are observed 
for almost all the ROIs that showed significant MSK neg-
ative rates (Fig. 4D1 and 4D2).

The clearest example of a quadratic relationship with 
age is for ODI, where the youngest subgroup shows sig-
nificant positive age effects for many ROIs (e.g., Corpus 
Callosum Genu, Internal Capsule, Anterior and Superior 
Corona Radiata, Superior Longitudinal Fasciculus, Supe-
rior Fronto- Occipital Fasciculus, Cerebral Peduncle, and 
Fornix Column and Body; Fig. 4E1), whereas the middle- 
aged subgroup shows a few effects of age across ROIs 
(Fig.  4E2), and the oldest subgroup shows significant 
negative effects in most ROIs (Fig. 4E3).

Fig. 2. Mean diffusion metrics extracted from the voxels of all white- matter ROIs as a function of participant’s age, for 
each dMRI metric: (A) Fractional Anisotropy (FA) from DTI; (B) Mean Signal Diffusion (MSD, in µm2/ms) from DKI; (C) 
Mean Signal Kurtosis (MSK) from DKI; (D) Neurite Density Index (NDI) from NODDI; (E) Orientation Dispersion Index (ODI) 
from NODDI; and (F) Volume Fraction of Free isotropic water diffusion (Fiso) from NODDI. The proportion of variance (R2) 
explained by Linear (L) and Quadratic (Q) components of a second- order polynomial fit of age (with covariates of sex and 
age- by- sex interactions; see text) is shown at the top of each panel.
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Different age- subgroups show significant positive Fiso 
variation rates for different WM regions (Fig. 4F), whereas 
negative Fiso variations are only observed in the Cingulum 
Cingulate Gyrus for the oldest subgroup (Fig. 4F3).

3.5. Correlations between dMRI metrics and factor analysis

Figure  5 shows the Pearson correlation coefficient 
between each pair of the six metrics. The upper triangle 
shows the raw correlations, while the lower triangle 
shows the partial correlation having removed linear and 
quadratic effects of age. The similarity of the two trian-
gles indicates that the correlations between metrics are 
not driven primarily by common age effects (i.e., reflect 
differences between individuals and regions beyond 
those due to age). Higher positive correlations are 
observed between MSK and NDI and between MSD and 
Fiso, while the strongest negative correlation is between 
FA and ODI. Correlations near zero are observed between 
MSD and ODI, between MSK and Fiso, and between MSK 
and ODI when linear and quadratic effects of age are 
removed.

The first three principal components (PCs) of the 
above correlation matrix explain 46.3%, 29.0%, and 
20.3% of the variance respectively, with the fourth PC 

only explaining 2.2%. Therefore, only the first three 
dimensions are retained, but rotated to maximise vari-
ance of the loadings (i.e., factor analysis). Three main 
factors are also supported by Kaiser’s criterion (nor-
malised eigenvalues greater than one). The factor scores 
across metrics are shown in the three upper panels of 
Figure 6. The first factor loads most strongly and posi-
tively on MSK and NDI, with a smaller negative loading 
on MSD and smaller positive loadings on the rest, par-
ticularly FA. Thus, this first factor most likely reflects 
age- related differences in tissue microscopic properties 
(such as fibre density or myelin) not related to confound-
ing factors such as mesoscopic differences as fibre 
crossing/dispersion/fanning nor differences in free 
water content. The second factor positively loads on 
MSD and Fiso, most likely reflecting the free water contri-
bution to the diffusion- weighted signal. The third factor 
only has strong positive and negative loadings on ODI 
and FA respectively, likely reflecting effects of tissue 
configuration complexity such as presence of crossing, 
dispersing, or fanning fibres. The lower three panels of 
Figure 6 show how the factor loadings across partici-
pants (averaged across ROI) vary with age: Factor 1 
shows an inverted U- shape with age (linear and qua-
dratic effects explaining 29% and 17% of its variance), 

Fig. 3. Proportion of variance explained (R2) by linear and quadratic effects of age on the six diffusion metrics (FA, MSD, 
MSK, NDI, ODI, and Fiso from left to right) for each ROI separately in different rows. The ROIs are sorted in a descending 
manner according to their mean R2 values across ROIs. Abbreviations: Ant –  anterior; Fasc –  Fasciculus; Inf –  Inferior,  
Ped –  Peduncle; Post –  Posterior; Sup –  Superior; Occip –  Occipital
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Factor 2 shows a positively- accelerated effect of age 
(with 54% of its variance explained by a linear effect, 
and a further 16% by a quadratic effect), while Factor 3 
shows a linear increase with age, explaining 11% of its 
variance. Given these interpretations of the three fac-
tors, Figure 6 reinforces how FA and MSD are likely to 
be influenced by a mixture of underlying factors, 

whereas the three NODDI metrics are largely selective to 
each factor, and MSK loads predominantly on Factor 1.

The loadings of each factor across ROIs are shown in 
Figure 7, which seem to be aligned with the expected 
microstructural features of different WM regions. For 
example, the three ROIs in the Corpus Callosum, where 
the underlying fibre architecture is characterised by a 

Fig. 4. Linear effects of age for the six diffusion metrics (FA, MSD, MSK, NDI, ODI, and Fiso from panels A to F) within 
three age subgroups (left to right subpanels), overlaid on the JHU- ICBM FA template— in each panel, results are displayed 
for a coronal (right) and an axial (left) slice. Correction for multiple comparison is performed using FDR (q < 0.05). 
Significant negative and positive age effects are colour- coded by blue and red intensities respectively; while non- 
significant effects are shown in green.
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single fibre population, have relatively low loadings on 
Factor 3, while the ROIs in Anterior, Superior, and Pos-
terior Corona Radiata have high loadings on this factor, 
consistent with increased fibre complexity in that region, 
including crossing fibres. For Factor 2, ROIs close to 
cerebrospinal fluid such as the Column and Body of the 
Fornix, Corticospinal Tract, Medial Lemmiscus, Cere-
bellar Peduncles, and Cerebral Peduncle have relatively 
high loadings compared to regions further away from 
the ventricles, such as the Cingulum Cingulate Gyrus, 
Cingulum Hippocampus, and Fornix Stria Terminalis.

Finally, the effect of age on each Factor in each ROI is 
shown in Figure  8. The strongest effects with age are 
observed for Factors 1 and 2, which show effects of age 
on most ROIs, while for Factor 3 strong effects with age 
are only observed for a handful of ROIs. As expected 
from Figure  3, a few ROIs, including the Cerebellar 
Peduncles, the Pontine Crossing Track, Corticospinal 
Tract, and Medial Lemniscus, show weak effects of age 
on every factor.

3.6. Factor analysis with radial and axial metrics

Factor analyses were repeated with additional, standard 
diffusion/kurtosis quantities. Figure  9A shows the per-
centages of the total variance explained by each principal 
component when considering the previous six main dMRI 
metrics (FA, MSD, MSK, NDI, ODI, Fiso), while Figure 9B 
shows the corresponding percentages when adding 
mean, radial, and axial diffusivity (i.e., with nine metrics in 

total). Based on the Kaiser criterion (normalised eigenval-
ues greater than one), three factors still explained over 
95% of the variance in the nine metrics. The relative 
 variance captured by each factor changed somewhat 
( Supplementary Fig. S7 in Supplementary Material Appen-
dix D), with the first factor now capturing free water differ-
ences with age, most likely due to the large free water 
contribution from the additional diffusion quantities, but 
the interpretation of the factors appeared unchanged.

Figure 9C shows the variance explained when adding 
mean, radial, and axial kurtosis, that is, with 12 metrics. 
Although the Kaiser criterion would still only entail three 
factors, four factors are now required to explain over 
95% of the variance in all 12 measures. Figure 9D shows 
the loadings of these four factors. While Factors 1, 2, and 
4 resemble the factors related to free water, microstruc-
tural properties, and fibre crossing/dispersion/fanning 
differences from our previous factor analysis (Fig. 6 and 
Supplementary Fig. S7), Factor 3 shows distinct loadings 
in MK and RK (and MSK, FA, and NDI to some extent).

4. DISCUSSION

Previous studies showed that dMRI can reveal informa-
tion about age- related microstructural alterations of brain 
tissues that are not detected by conventional imaging 
techniques ( Maillard  et al.,  2013;  Nusbaum  et al.,  2001; 
 Pelletier  et al.,  2017). While conventional structural MRI 
contrasts show that in general the volume of WM 
decreases only after the fifth decade of life ( Bethlehem 
 et al.,  2022;  Lebel  et al.,  2012;  Walhovd  et al.,  2011), Dif-
fusion Tensor Imaging (DTI) suggests that diffusion Frac-
tional Anisotropy (FA) in WM regions declines with age 
from early adulthood ( Davis  et  al.,  2009;  Lebel  et  al., 
 2012;  Pfefferbaum  et  al.,  2000;  Sullivan  et  al.,  2001). 
These studies hypothesised that FA declines were asso-
ciated with degenerative processes such as axonal loss 
and demyelination; however, such interpretation is lim-
ited by DTI’s lack of specificity ( De  Santis  et  al.,  2014; 
 Wheeler- Kingshott  et  al.,  2009). In recent years, more 
advanced dMRI techniques have been applied in an 
attempt to provide more specific information on white- 
matter microstructural changes ( Beck  et al.,  2021;  Billiet 
 et al.,  2015;  Chang  et al.,  2015;  Coutu  et al.,  2014;  Cox 
 et  al.,  2016;  Das  et  al.,  2017;  Falangola  et  al.,  2008; 
 Kodiweera  et al.,  2016;  Merluzzi  et al.,  2016;  Taha  et al., 
 2022). However, results across different studies do not 
always agree, which could be a consequence of 1) differ-
ent dMRI techniques used and 2) different demographic 
characteristics of the populations studied.

Fig. 5. Pearson correlation coefficient (R) between each 
pair of the metrics. The upper right triangle shows raw 
correlations; the lower left triangle shows correlations after 
removing linear and quadratic effects of age.
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In this study, we addressed these discrepancies by 
comparing different dMRI techniques (DTI, DKI, NODDI) 
on a cohort of adults approximately uniformly distrib-
uted across the ages 18- 88 years. Firstly, we found sig-
nificant quadratic effects for most of the diffusion MRI 
metrics considered (especially for MSD, MSK, NDI, and 
Fiso) in both whole- brain and regional white matter (Fig. 2 
and Fig. 3), consistent with previous reports ( Beck  et al., 
 2021;  Billiet  et al.,  2015;  Coutu  et al.,  2014;  Cox  et al., 
 2016;  Falangola  et al.,  2008;  Korbmacher  et al.,  2023; 
 Lebel  et  al.,  2012;  Yeatman  et  al.,  2014). We further 
explored these quadratic effects by looking at different 
brain regions over three age subgroups (Fig. 4). The dif-
ferent (linear) effects of age in each subgroup imply that 
the age- related patterns observed across metrics and 

ROIs are highly dependent on the age ranges of the vol-
unteers included in a study, which might explain some 
of the inconsistencies in previous studies using DKI/
NODDI ( Billiet  et al.,  2015;  Chang  et al.,  2015;  Cox  et al., 
 2016;  Merluzzi  et  al.,  2016). Overall, our results also 
confirm that going beyond DTI, more advanced dMRI 
techniques based on signal representation (e.g., DKI) 
and microstructural models (e.g., NODDI) can provide 
different information about microstructural age- 
associated changes (Fig. 4 and Fig. 5), consistent with 
prior claims ( Billiet  et  al.,  2015;  Chang  et  al.,  2015; 
 Coutu  et  al.,  2014;  Das  et  al.,  2017;  Falangola  et  al., 
 2008;  Gong  et  al.,  2014;  Kodiweera  et  al.,  2016;  Lätt 
 et  al.,  2013;  Taha  et  al.,  2022). However, our factor 
 analysis shows that variation in the main six diffusion 

Fig. 6. Loadings of three factors from factor analysis across the six diffusion metrics (upper three panels) and their 
profiles against age (lower three panels).
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metrics used in this study (FA, MSD, MSK, NDI, ODI, 
Fiso) can be captured by just three main dimensions 
(Fig.  6), which we have linked to effects of 1) tissue 
microscopic properties, 2) tissue configuration com-
plexity, and 3) free- water content. The loading of these 
factors across different WM ROIs was shown to be 
aligned with their expected microstructural differences 
(Fig.  7) and reveals regional differences in age- related 
changes (Fig. 8). This study also reveals that RK and AK 
may provide addition information about age effects, as 
an extra dimension seems to be present when these 
metrics are included in the factor analysis (Fig. 9). These 
aspects are discussed in more detail bellow.

4.1. FA has limited specificity to age- related changes

Consistent with early DTI ageing studies, (e.g.,  Davis 
 et al.,  2009;  Lebel  et al.,  2012;  Pfefferbaum  et al.,  2000; 
 Sullivan  et al.,  2001;  Zhang  et al.,  2010), the results of the 
present study show general WM FA declines from age 
18 years onwards (Fig. 2). However, these early effects of 
age are not found for the diffusion metrics that are invari-
ant to fibre architecture (i.e., MSD, MSK, NDI). Therefore, 
as mentioned in previous studies ( Billiet  et al.,  2015;  Chang 
 et  al.,  2015;  Kodiweera  et  al.,  2016), early age- related 
changes of FA are likely to be a consequence of changes 
in fibre architecture that can be detected by NODDI’s ori-
entation dispersion. Although ODI showed only a modest 

Fig. 7. Loadings of three factors from factor analysis on each of the 27 ROIs.
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age effect in the global WM profiles (Fig. 2), the impact of 
ODI in FA is highlighted by the strong negative correla-
tions between these metrics in Figure 5. Moreover, the 
poor specificity of FA is supported by our factor analysis 
(Fig. 6), which suggests that FA estimates reflect a mix-
ture of all three factors detected in this study, with Factor 
3, the one related to fibre architecture alterations, show-
ing the highest loadings.

The poor specificity of FA limits its use in the interpre-
tation of age- related microstructural changes, as exem-
plified in our age subgroup analysis. For instance, while 
early studies interpreted FA declines as WM degenera-
tion, results from the youngest age subgroup show that 
declines in FA (Fig. 4A1) are not accompanied by declines 

in MSK and NDI (Fig. 4C1 and Fig. 4D1). Instead, these 
early FA decreases are in the line with significant ODI 
increases observed in some WM regions, such as the 
Internal Capsule Posterior Limb, Anterior Corona Radi-
ata, and Corpus Callosum Genu (Fig. 4E1). In addition to 
its poor specificity to detect late maturation processes, 
FA is inadequate in predicting WM degeneration in older 
age. Indeed, while both MSK and NDI show widespread 
declines in older age (Fig. 4C3 and Fig. 4D3), FA declines 
are only observed in some WM ROIs (Fig. 4A3). This is 
likely a consequence of the widespread decrease in tis-
sue configuration complexity, as measured by ODI 
decreases (Fig. 4E3), which has the opposite impact of 
true WM degeneration in FA estimates.

Fig. 8. Effects of age (R2 from second- order polynomial fit) for each factor and each of the 27 ROIs.
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Fig. 9. Factor analysis when adding standard diffusion and kurtosis metrics reconstructed from standard DKI. 
Percentage of total variance explained by each principal component when considering: (A) the six main metrics of this 
study (FA, MSD, MSK, NDI, ODI, Fiso); (B) the six main metrics of this study plus three diffusion metrics computed from 
standard DTI: mean, radial, and axial diffusivity (MD, RD, AD); (C) as in (B), plus three diffusion kurtosis metrics: mean, 
radial, and axial kurtosis (MK, RK, AK). (D) Loadings of four factors from factor analysis when considering 12 diffusion 
metrics (upper three subpanels) and their profiles against age (lower three subpanels).
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Given FA’s lack of specificity, our results suggest that 
FA is not an adequate WM marker for use in future stud-
ies assessing, for example, the relationships between 
brain properties and age- related cognitive declines. This 
observation also provides strong evidence to support 
previous claims about the limited sensitivity and specific-
ity of DTI ( De  Santis  et al.,  2014;  Henriques  et al.,  2015; 
 Henriques,  Correia,  et  al.,  2021;  Jeurissen  et  al.,  2013; 
 Wheeler- Kingshott  et al.,  2009).

4.2. Decoupling age changes from fibre dispersion confounds

One main achievement of more advanced dMRI tech-
niques that go beyond DTI is the ability to decouple 
microstructural alterations from confounding effects 
related to fibre architecture. In ageing studies, minimising 
this confounding effect is important since alterations of 
the morphology or dispersion of white- matter bundles 
are likely to be directly related to the expected macro-
scopic volume changes of WM observed across the 
human lifespan ( Bethlehem  et  al.,  2022;  Lebel  et  al., 
 2012;  Walhovd  et  al.,  2011). Indeed, DKI metrics inde-
pendent of fibre architecture can be obtained from 
diffusion- weighted signals averaged along multiple direc-
tions (also known as powder- averaged signals) ( Henriques 
 et  al.,  2019;  Henriques,  Correia,  et  al.,  2021;  Jensen 
 et al.,  2005). On the other hand, microstructural models 
have been designed to separate effects of microstruc-
tural features from fibre orientation distribution properties 
( Jespersen  et al.,  2007,  2010;  Kaden,  Kelm,  et al.,  2016; 
 Novikov  et al.,  2018), as in NODDI ( Zhang  et al.,  2012).

The results obtained from the present cohort show 
that metrics designed to be independent from fibre archi-
tecture (e.g., MSK and NDI) only present declines from 
the late 40s in the general WM age profiles and most 
 individual WM ROIs (Fig. 2, Supplementary Fig. S4, and 
Supplementary Fig. S5). This suggests that these metrics 
are sensitive to late maturation processes not resolved 
by DTI, and their later declines may be more specific to 
general age- related degeneration processes than DTI 
metrics such as FA. Indeed, in our regional brain analysis, 
MSK and NDI showed positive correlations with age in 
the younger age- group that are not resolved by FA 
(Fig. 4). These include positive correlations in the Anterior 
Limb of the Internal Capsule and Uncinate Fasciculus, 
detected by both MSK and NDI. These findings are con-
sistent with WM regions that are expected to maturate 
later in life ( Lätt  et al.,  2013;  Yap  et al.,  2013). Both MSK 
and NDI consistently reveal negative effects of age in the 
posterior thalamic radiation, which are in line with the 

accentuated age effects detected in association fibres by 
 Cox  et al.  (2016). MSK also shows a positive effect of age 
in the External Capsule, likely reflecting later maturation 
of association WM bundles passing through this region 
( Lätt  et al.,  2013;  Yap  et al.,  2013). The positive rate for 
the External Capsule in the younger subgroup is not 
detected by NDI; however, this is likely to be a conse-
quence of the narrow age range covered by our subgroup 
analysis. Indeed, the dMRI profiles for selected individual 
WM ROIs (Supplementary Fig. S4) show that NDI is also 
sensitive to positive age correlation in the External Cap-
sule until the mid- 40s.

These results suggest that to properly track dMRI 
metric age profiles, not only should better dMRI metrics 
than FA be considered, but data also are needed from 
individuals who span the full lifespan. Based on the Cam- 
CAN cohort with uniform sampling of adult ages, MSK 
and NDI values peak at later ages than FA in all WM 
regions (Supplementary Fig.  S4 and Supplementary 
Fig.  S5), suggesting that previous DTI- based studies 
examining WM difference across the adult lifespan may 
have underestimated the ages at which tracts stop 
maturing and start degenerating.

It should be noted that, as MSKI and NDI, MSD is also 
expected to be invariant to fibre dispersion effects (c.f. 
Fig. 5). However, this metric provides less specific tissue 
microstructural characterisation since it is highly affected 
by increases in free- water partial volume effects with age 
(c.f. Fig. 5 and Fig. 6). This may also explain the increases 
of MSD observed from the two younger age subgroups 
(c.f. Fig. 4B1 vs Fig. 4F1 and Fig. 4B2 vs Fig. 4F2).

4.3. Comparison with previous dMRI studies

The results of this study show that correlations between 
dMRI metrics and subject age depend on the age ranges 
(c.f. Fig. 4), suggesting that previous inconsistencies in the 
literature may be a consequence of differences in sample 
distributions of age. For example, the positive NDI varia-
tion rates observed by  Chang  et al.  (2015) and  Kodiweera 
 et al.  (2016) might be a consequence of a large number of 
young to middle- aged participants, while the negative NDI 
variation rates observed by  Cox  et al.  (2016) and Merluzzi 
et al. (2016) might reflect the relatively older age ranges 
included in their respective cohorts. The wider and more 
uniform distribution of age in the present Cam- CAN cohort 
allows the detection of age periods where NDI both 
increases and then declines (c.f. Fig. 2 and Fig. 4).

In this study, higher R2 values for the age effects are 
present for Fiso, MSD, and MSK when compared with FA, 
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NDI, and ODI (Fig.  3). Higher R2 values for MSD agree 
with the higher MD R2 values reported by  Cox  et  al. 
 (2016). However, these changes may be difficult to inter-
pret due to the lack of specificity of MSD/MD. For exam-
ple, we found strong correlations between MSD and Fiso 
(Fig. 4), and previous studies have shown reduced asso-
ciations between MD and age when MD is corrected for 
free- water contamination (e.g., Chad et al., 2018). In a 
recent study ( Pieciak  et  al.,  2023), Fiso was shown to 
explain most of DTI changes with age, which is in line 
with the higher R2 values shown here (Fig. 3). However, 
this study did not assess effects from non- Gaussian dif-
fusion, which here is shown to explain 46.3% of the total 
variance in our six main dMRI metrics (Fig. 6).

Although in this study we show that MSK and NDI 
age- profiles are generally consistent (Fig. 2, Fig. 4, Fig. 5, 
and Fig. 6), the same was not observed in all previous 
studies (e.g.,  Billiet  et al.,  2015). This discrepancy is likely 
a consequence of different methodologies used. For 
instance, while the diffusion metrics of our study are 
extracted from ROIs in each participant’s native space, 
the diffusion metrics extracted by Billert et al. (2015) were 
obtained after warping and reslicing images to a com-
mon template. While the analysis preformed in the pres-
ent study was designed to minimise the effect of 
free- water partial volume increase with age (i.e., by the 
exclusion of ROI voxels that mainly contain free water, 
Fiso > 0.9), the interpolation entailed by reslicing may have 
the opposite effect of highlighting age- related increases 
on free- water fraction estimates. Template registration 
may also explain the poor sensitivity of DKI to age alter-
ations reported by Billert et al. (2015), since interpolation 
may induce the propagation of inaccurate kurtosis esti-
mates, given that implausible high- magnitude kurtosis 
estimates have been reported in previous studies 
( Henriques,  Jespersen,  et al.,  2021;  Tabesh  et al.,  2011). 
In our study, in addition to avoiding detrimental effects of 
diffusion metric map registration, the use of powder- 
averaging for MSK estimation was shown to successfully 
mitigate implausible negative kurtosis in WM brain 
regions (c.f. Fig. 1).

Regarding the study by  Beck  et al.  (2021), which used 
a cohort of participants with a similar number to our 
study, their age profiles of different dMRI metrics 
extracted from global WM skeletons agree with our global 
WM dMRI metrics age profiles. However, some differ-
ences in ODI profiles can be noted. While  Beck  et  al. 
 (2021) showed only slowing down of the rate of ODI 
increase in older age, our analysis suggests that ODI may 
actually decrease in older age (Fig.  4E2 and Fig.  4E3). 

These discrepancies may likely be explained by differ-
ences on the WM regions of interest assessed— the thin-
ner WM skeletons used by  Beck  et al.  (2021) are likely to 
be less sensitive to ODI decreases than the wider WM 
regions of interest used in our study. Despite this, the 
work by  Beck  et al.  (2021) agrees that age profiles from 
different dMRI metrics may be similar. For example, the 
similarities observed between their NDI and MK profiles 
are in line with the similarities observed between our NDI 
and MSK estimates. Nonetheless, our study goes further 
by providing a formal analysis on information redundancy 
across different dMRI metrics, leading to a more compre-
hensive understanding and interpretation of their rela-
tionships in both global and regional WM regions (see the 
discussion of our factor analysis below).

Finally, a recent study using advanced diffusion 
encoding to resolve sources of non- Gaussian diffusion 
(anisotropic vs isotropic kurtosis) revealed that MSK 
decreases in old age are in line with anisotropic kurtosis 
decreases ( Kamiya,  Kamagata,  et al.,  2020). These results 
support the hypothesis that age- related MSK decreases 
in healthy brain ageing are, most likely, related to general 
white- matter degeneration, rather than increases of free- 
water partial volume effects (captured by isotropic kurto-
sis).

4.4. Factor analysis across metrics

Our factor analysis across subjects and the six main 
dMRI metrics supports three main dimensions (Fig.  6), 
explaining a total of 97.8% of the variance in the data. A 
similar analysis by  Chamberland  et al.  (2019), using a dif-
ferent range of metrics, reported only two principal com-
ponents (PCs), with interpretations similar to Factors 1 
and 3 in the present study. However, the two components 
reported by Chamberland explained only 80% of the vari-
ance in their data, with no other PCs reported. It is there-
fore unknown whether a 3rd component corresponding to 
metrics of free water was also present in that study, since 
the authors did not include metrics from dMRI techniques 
designed to decouple such affects. Moreover, free- water 
contributions may be expected to explain less variance in 
the study by Chamberland and colleagues than in the 
present study given their much smaller range of ages.

Factor 1 shows an inverted U- shaped profile with age, 
explaining 46.3% of the variance, suggesting it is sensi-
tive to ongoing maturation processes into the early 30s, 
as well as white- matter degeneration later in life. As dis-
cussed above, this is likely to reflect general mechanisms 
of tissue maturation/degeneration related to myelination 
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and axonal density. Factor 2 shows a positive correlation 
with age, which accelerates from the 60 s and explains 
29.04% of the variance. This is consistent with enlarged 
ventricles with age, which results in increased partial vol-
ume effects from CSF, as captured by Fiso and MSD 
(which here is not corrected by free- water effects in DKI 
modelling). Finally, Factor 3 shows a linear increase with 
age, which explained 20.3% of the variance. This is con-
sistent with a decrease in orientational coherence of the 
underlying white- matter fibres with age as captured by 
ODI and FA. The strong positive correlation between Fiso 
and MSD (Fig. 4) suggests that when free- water model-
ling is not performed (standard DTI fitting), the impact of 
this increased partial volume effect is captured by an 
increase in MSD.

Different ROIs show different effects of age, and differ-
ent loadings on the three factors. For example, Factors 1 
and 2 show the well- documented ‘anterior- posterior gra-
dient of ageing’ across the three ROIs covering the cor-
pus callosum (genu, body, and splenium), with a stronger 
association with age in the genu (Fig. 8 and Supplemen-
tary Fig. S5). Factor 3 shows in general weaker correla-
tions with age, with only three ROIs (Fornix Column and 
Body, Superior Corona radiata, and Superior Fronto- 
Occipital Fasciculus) showing an R2 value greater than 
0.25. This suggests that factors that affect tissue micro-
scopic properties (such as fibre density or myelin) and 
free- water partial volume effects change more with age 
than fibre orientation complexity.

4.5. Factor analysis with radial and axial metrics

As discussed above, dMRI models such as DKI and 
NODDI can be used to decouple general microstructural 
differences from confounding effects of free- water con-
tamination and fibre dispersion. However, when consid-
ering only the six main dMRI metrics (FA, MSD, MSK, 
NDI, ODI, Fiso), factor analysis revealed only a single fac-
tor that is easily related to microscopic alterations (Factor 
1 in Fig. 6, Fig. 7, and Fig. 8). While the information pro-
vided by MSK and NDI may be associated to general WM 
maturation and degeneration, obtaining extra information 
dimensions about microstructural alterations may be rel-
evant, for example, to distinguish different mechanism of 
WM degeneration, such as fibre loss versus demyelin-
ation ( Beck  et  al.,  2021;  Coutu  et  al.,  2014;  Das  et  al., 
 2017;  Davis  et  al.,  2009;  Fieremans  et  al.,  2013;  Gong 
 et al.,  2014;  Lätt  et al.,  2013).

To explore whether directional DTI/DKI metrics provide 
additional information about tissue microstructure, two 

extra- factor analyses were performed incorporating radial 
and axial diffusion/kurtosis quantities. While these extra- 
factor analyses still only revealed three main factors based 
on the Kaiser criterion, when adding the three standard 
DKI metrics of MK, RK, and AK (Fig. 9), it is noteworthy 
that a fourth factor was required to explain over 95% of the 
variance, and this extra factor had distinct loadings on 
some of the kurtosis metrics. This finding is in line with 
previous studies that argue that radial and axial kurtosis 
metrics provide additional information about age- related 
microstructural differences ( Fieremans  et al.,  2013;  Helpern 
 et al.,  2011;  Korbmacher  et al.,  2023;  Lätt  et al.,  2013;  Taha 
 et  al.,  2022), particularly above considering only NODDI 
metrics ( Korbmacher  et al.,  2023). Indeed, the extra infor-
mation provided by directional kurtosis quantities is basis 
for microstructural models that attempt to extract metrics 
more specific to different degeneration mechanisms 
( Fieremans  et al.,  2011,  2013;  Jespersen,  2018;  Jespersen 
 et al.,  2018). Nonetheless, care should be taken in trying to 
interpret the extra information provided by RK and AK, and 
future studies are required to decouple the microscopic 
effect on these directional metrics from the confounding 
effect from free water contamination and fibre crossing/
dispersion/fanning (particularly since Fig.  9D shows that 
RK and AK are highly related to the factors associated with 
these effects).

4.6. Limitations and future directions

In this study, NDI and MSK increases are assumed to indi-
cate ongoing WM maturation, while their decreases are 
associated to general WM degeneration. This interpreta-
tion may, however, only hold in the absence of acute tissue 
damage processes. Indeed, previous studies had shown 
that kurtosis metrics, as well as NODDI’s NDI, are affected 
by acute WM lesions, such as in ischemic stroke or trau-
matic brain injury (e.g.,  Huang  et al.,  2022;  Hui  et al.,  2012; 
 Kamiya,  Hori,  et al.,  2020;  Rudrapatna  et al.,  2014;  Skinner 
 et al.,  2015;  Zhuo  et al.,  2012). While MSK and NDI may 
provide better metrics than DTI metrics to study gradual 
brain microstructural changes related to healthy brain age-
ing ( Arfanakis  et al.,  2016;  Han  et al.,  2016;  Huber  et al., 
 2019), more advanced dMRI techniques are needed to 
account for acute brain lesions, such as the use of more 
complex dMRI modelling or more advanced dMRI acquisi-
tions ( Alves  et al.,  2022;  Eriksson  et al.,  2013;  Henriques 
 et  al.,  2020;  Henriques,  Jespersen,  &  Shemesh,  2021; 
 Kerkelä  et al.,  2020; Lampinen et al., 2017;  Lasič  et al., 
 2014;  Novello  et  al.,  2022;  Shemesh  et  al.,  2012; 
 Szczepankiewicz  et al.,  2015,  2016;  Topgaard,  2017).
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Although acute WM lesions were not found in the 
Cam- CAN dMRI data, our results may still be influences 
by neuropathological factors. For instance, white- 
matter hyperintensities in T2- weighted images are 
commonly observed in older people, and typically 
related to neuropathological conditions such as small 
vessel disease ( Debette  and  Markus,  2010;  Hunt  et al., 
 1989;  Svärd  et al.,  2017;  Tu  et al.,  2021;  Wardlaw  et al., 
 2015). Since white- matter hyperintensities are known 
to affect dMRI metrics ( Kamagata  et  al.,  2021;  Raja 
 et al.,  2019;  Tu  et al.,  2021), the lower FA, NDI, and kur-
tosis values and higher diffusivities values observed in 
the WM of older people may be affected by this type of 
lesion.

While the present study focused on the most com-
monly used dMRI techniques in previous ageing studies 
(e.g., DTI/DKI/NODDI), future studies could check if met-
rics from other microstructural models that estimate a 
larger number of parameters can also be reduced to the 
factors detected in this study, including metrics from the 
Composite Hindered and Restricted Model of Diffusion 
(CHARMED;  Assaf  and  Basser,  2005), Neurite Orientation 
Dispersion and Density Imaging with Diffusivities Assess-
ment (NODDIDA;  Jelescu  et al.,  2016), and the general 
standard model (SM) for WM ( Novikov  et al.,  2018). These 
models were not considered here because they are 
known to be ill- posed when applied to current conven-
tional diffusion MRI acquisitions ( Jelescu  et  al.,  2020, 
 2016;  Novikov  et  al.,  2018) and, consequently, require 
more complex fitting routines ( Coelho  et  al.,  2022; 
 Mozumder  et al.,  2019;  Reisert  et al.,  2017). Other mod-
els that are well- posed include the one-  and two- 
compartment spherical mean techniques ( Kaden,  Kelm, 
 et al.,  2016;  Kaden,  Kruggel,  et al.,  2016), but these were 
not considered here because they were already shown to 
provide the same information as the DKI quantities 
explored here ( Henriques  et  al.,  2019). Future studies 
could expand our analyses to diffusion MRI techniques 
that use additional MRI information from diffusion- 
weighted data with higher b- values and different diffusion 
timing parameters (e.g., diffusion pulse separation Δ and 
diffusion pulse duration δ;  Jensen  et al.,  2016;  Jespersen 
 et  al.,  2010,  2007;  Palombo  et  al.,  2020;  Veraart  et  al., 
 2020), advanced diffusion encodings ( Eriksson  et  al., 
 2013;  Henriques  et  al.,  2020;  Henriques,  Jespersen,  & 
 Shemesh,  2021;  Kerkelä  et al.,  2020;  Lasič  et al.,  2014; 
 Novello  et al.,  2022;  Shemesh  and  Cohen,  2011;  Shemesh 
 et  al.,  2011;  Szczepankiewicz  et  al.,  2019;  Topgaard, 
 2017), and/or different relaxation times ( Anania  et  al., 
 2022;  Slator  et al.,  2021;  Veraart  et al.,  2018).

Regarding the characterisation of the age- profiles for 
different metrics, in the present study these are character-
ised using quadratic and linear regression models. 
Although these polynomial models can detect the pres-
ence of global age- related changes, more sophisticated 
methods like splines may provide more accurate estimates 
of age- related trajectories, particularly if tissue maturation 
occurs at faster rates than the rates of tissue degeneration 
( Fjell  et al.,  2010;  Lebel  et al.,  2012;  Yeatman  et al.,  2014). 
Thus, while the present focus was on comparing the 
effects of age on different dMRI metrics, rather than mak-
ing strong claims about the neuroscience of ageing, future 
studies could employ more sophisticated methods for 
estimating age trajectories, particularly inflection points 
when rates of WM change from increasing to decreasing. 
Furthermore, our results are all derived from cross- 
sectional differences in age across individuals; future stud-
ies need to compare them with results from longitudinal 
dMRI datasets (e.g.,  Barrick  et al.,  2010;  Beck  et al.,  2021; 
 Sexton  et  al.,  2014;  Vik  et  al.,  2015), where age can be 
properly dissociated from year of birth. Finally, although 
here we focus on dMRI metrics in WM regions of interest, 
future studies could extend our analyses to the character-
isation of age differences in grey matter ( Falangola  et al., 
 2008;  Gong  et al.,  2014;  Helpern  et al.,  2011).

5. CONCLUSION

This study provides a better understanding of the rela-
tionship between different dMRI models and their sensi-
tivity to age- related changes. While we confirm that the 
sensitivity and specificity of fractional anisotropy from 
“standard” DTI is limited by white- matter fibre disper-
sion/crossing confounding effects, we show that 
advanced models reveal additional insights, since these 
are capable of separating age- related microstructural 
information from mesoscopic tissue alterations (e.g., 
changes on the fibre dispersion or crossing degree). Fac-
tor analysis across six diffusion metrics (FA, MSD, MSK, 
NDI, ODI, Fiso) revealed only three factors, which are likely 
to reflect: 1) white- matter maturation followed by degen-
eration processes; 2) increase in free- water partial vol-
ume effects with accelerated increases from the 60  s; 
and 3) more subtle alterations in fibre organisation (i.e., 
changes in fibre crossing and dispersion). While FA was 
shown to reflect a combination of all three factors, both 
MSK and NDI aligned with factor 1, while Fiso and ODI 
aligned with Factors 2 and 3 respectively. The three dif-
ferent factors show different loadings in different white- 
matter regions, revealing that age alterations have 
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regional effects that reflect distinct combinations of dif-
ferent underlying microstructural alterations. Finally, this 
study shows some evidence that extra information may 
be obtained from directional kurtosis metrics such as 
axial and radial kurtosis, though these are best inter-
preted when combined with other metrics, as in the fac-
tor analysis performed here.
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