
Received: 2 August 2023 Revised: 3 January 2024 Accepted: 17 January 2024

DOI: 10.1002/alz.13733

R E S E A RCH ART I C L E

Entorhinal-based path integration selectively predicts midlife
risk of Alzheimer’s disease

CocoNewton1 Marianna Pope1,2 Catarina Rua3 Richard Henson1

Zilong Ji4 Neil Burgess4 Christopher T. Rodgers3 Matthias Stangl5,6

Maria-Eleni Dounavi1 Andrea Castegnaro4 Ivan Koychev7

PareshMalhotra8 ThomasWolbers9 Karen Ritchie10 CraigW. Ritchie11

JohnO’Brien1,2 Li Su1,12 Dennis Chan1,4 for the PREVENTDementia Research

Programme

1Department of Psychiatry, University of Cambridge, Cambridge, UK

2Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK

3Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK

4Institute of Cognitive Neuroscience, UCL, London, UK

5Jane and Terry Semel Institute for Neuroscience andHuman Behavior, University of California, Los Angeles, California, USA

6Department of Biomedical Engineering, Boston University, Boston,Massachusetts, USA

7Department of Psychiatry,Warneford Hospital, Oxford University, Oxford, UK

8Department of Brain Sciences, Imperial College London, London, UK

9German Centre for Neurodegenerative Diseases (DZNE), Magdeburg, Germany

10Inserm, Institut de Neurosciences, Montpellier, France

11Centre for Dementia Prevention,Western General Hospital, University of Edinburgh, Edinburgh, UK

12Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK

Correspondence

Dennis Chan, Institute of Cognitive

Neuroscience, Alexandra House, 17Queen’s

Square, LondonWC1N 3AZ, UK.

Email: dennis.chan@ucl.ac.uk

Funding information

Merck Investigator Studies Program,

Grant/Award Number:MISP-57175;

Alzheimer’s Society, Grant/AwardNumbers:

178, 264, 397; UKNational Institute for

Health Research Clinical Research Network

and Biomedical Research Centre Cambridge,

Grant/Award Number: 1215-20014; US

Alzheimer’s Association, Grant/Award

Number: TriBEKa-17-519007; Alzheimer’s

Research UK;Wellcome, Grant/Award

Numbers: 098436/Z/12/B, 202805/Z/16/Z;

Abstract

INTRODUCTION: Entorhinal cortex (EC) is the first cortical region to exhibit neurode-

generation in Alzheimer’s disease (AD), associatedwith EC grid cell dysfunction. Given

the role of grid cells in path integration (PI)–based spatial behaviors, we predicted

that PI impairment would represent the first behavioral change in adults at risk of

AD.

METHODS:We compared immersive virtual reality (VR) PI ability to other cognitive

domains in 100 asymptomatic midlife adults stratified by hereditary and physiological

AD risk factors. In some participants, behavioral data were compared to 7T magnetic

resonance imaging (MRI) measures of brain structure and function.

RESULTS: Midlife PI impairments predicted both hereditary and physiological AD

risk, with no corresponding multi-risk impairment in episodic memory or other
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spatial behaviors. Impairments associated with altered functional MRI signal in the

posterior-medial EC.

DISCUSSION: Altered PI may represent the transition point from at-risk state to

diseasemanifestation in AD, prior to impairment in other cognitive domains.
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1 BACKGROUND

Alzheimer’s disease (AD) is the leading cause of dementia and mortal-

ity, with limited treatment options.1 One major reason for the historic

failure of therapeutic trials is the difficulty in identifying the first onset

of clinically relevant disease when interventions may have maximal

value. While earlier detection of AD pathology is now possible with

scalable tests for amyloid and tau biomarkers,2 these alone do not

indicate the onset of clinical cognitive decline.3 Prevailing models of

AD progression, which describe early damage to the entorhinal cor-

tex (EC) and hippocampus within the medial temporal lobes (MTL),

propose that cognitive changes are absent in preclinical AD.4 How-

ever, subtle deficits on bespoke MTL-supported cognitive tests are

found in asymptomatic people at risk of AD who appear unimpaired

on standard neuropsychological tests. Increased physiological risk of

AD is associated with poorer allocentric spatial memory, which is

the ability to recall viewpoint-independent topographical details of

scenes.5 Familial AD genetic risk gene carriers are impaired on a visual

short-term associative memory binding paradigm,6 while carriers of

the apolipoprotein E (APOE) ε4 allele, the main genetic risk factor for

sporadic AD, consistently perform worse on tests of path integration

(PI).7–9

PI is a behavior of high interest in early AD as it is thought to

be subserved by spatially modulated grid cells in the EC,10 the first

neocortical region to exhibit tau pathology and neurodegeneration in

AD.11 PI represents a form of navigation in which self-motion cues are

used to estimate environmental position. In an AD mouse model, EC

tau pathology was associated with grid cell dysfunction and impaired

spatial behavior.12 Human studies have found that in patientswithmild

cognitive impairment (MCI) due to AD, PI error correlated with levels

of cerebrospinal fluid (CSF) tau and EC volume,13 while in APOE ε4 car-
riers, EC grid-like functional magnetic resonance imaging (fMRI) signal

was reduced.7

This study therefore tested the hypothesis that EC-related PI

impairment represents the first cognitive manifestation of AD, with

two predictions. First, that PI measured with immersive virtual reality

(VR) is impaired in people at risk of AD, independent of risk factor type.

Second, that the PI deficit would occur prior to impairment in other

cognitive domains potentially affected in preclinical AD. Given that PI

has not yet been assessed in preclinical AD in relation to brain struc-

ture and pathology, we additionally explored these measures using 7T

ultra-high field magnetic resonance imaging in a subset of participants.

2 METHODS

2.1 Participants

Participants were recruited from the PREVENTDementia prospective

cohort study14 of cognitively healthy individuals aged between 40

and 59 using newsletters and invitations during Year Two or Five

study follow-up visits across four UK sites (London, Cambridge,

Oxford, and Edinburgh). Power calculations derived from our study

in patients with MCI13 based on the primary outcome measure of

our VR PI task, Euclidean location error in meters, showed that

25 matched pairs of higher and lower risk participants would have

allowed us to show a mean group difference of 0.60 with an alpha

risk = 0.05 and a power of 0.80. One hundred twenty-three potential

participants initially expressed interest in taking part. One potential

participant was not suitable due to contraindications to using immer-

sive VR (severe motion sickness) and 22 participants later declined,

resulting in 100 people giving written informed consent for their

participation. One participant was excluded from analyses due to

incomplete data from the immersive VR task, leaving a final sample

of 99.

We stratified participants according to three major late-onset AD

risk factors (Table 1), whichwe investigated both alone and in combina-

tion: (1) parental family history (FH) of dementia (n = 61), associated

with a 3-fold increased risk;15 (2) the Cardiovascular Risk Factors,

Aging andDementia Study (CAIDE) risk score derived from physiologi-

cal variables including vascular health indicators, physical activity, and

education, associated with greater vascular pathology, tau accumula-

tion, and MTL atrophy over time;16 and (3) the APOE ε4 allele (n = 32),

associatedwith 3-fold increased risk.17 Given that females have higher

dementia prevalence,18 show diverging pathology progression in early

AD stages,19 and that navigational strategies differ between males

and females,20 participants were also stratified by sex (Table S1 in

supporting information).

Of these 99 participants, 55 additionally gave consent to take part

in a 7 Tesla MRI scan and were similarly stratified (Table S2 in support-

ing information). Inclusion criteria were participation in the amyloid

positron emission tomography (PET) PREVENT sub-study or giving a

CSF sample within the main PREVENT program, and an exclusion cri-

terion was contraindication to scanning at 7T. One participant was

excluded from analysis due to incomplete data from the immersive VR

task, leaving a final sample of 54.
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NEWTON ET AL. 3

RESEARCH INCONTEXT

1. Systematic review: While several studies have shown

altered spatial navigation in people at risk of Alzheimer’s

disease (AD), none have compared different spatial

behaviors across several AD risk factors.

2. Interpretation: Entorhinal cortex (EC)–based path

integration—but not other spatial or non-spatial

behavior—is selectively impaired in midlife people

with multiple different risk factors. This is consistent

with the EC being the site of initial tau deposition in AD

and with pathology disrupting the spatially-related firing

of EC neurons.

3. Future directions: The possibility that impaired path inte-

gration may represent the transition from at-risk status

to clinical disease onset will be investigated in a follow-

on study testing presymptomatic familial AD mutation

carriers. Parallel work in AD mice will investigate the

relationships among tau spread, EC neuronal activity,

and path integration. This cross-species work will deliver

crucial, currently missing, insights into how AD cellular

pathology is linked to clinical manifestation.

This study and the main PREVENT program were performed in

accordance with the Declaration of Helsinki and each was respectively

approved by institutional review boards at the National Healthy Sys-

tem London Camberwell St-Giles (ref. 12/LO/1023) and West London

Research Ethics Committees (ref. 18/LO/2418).

2.2 Risk factor characterization

Risk factor statuses were collected as part the main PREVENT

Dementia program at each site.14,21 When reporting the results, we

considered family history and APOE ε4 status as more hereditary

risk factors, and the CAIDE dementia risk score (DRS) as a more

physiological-based risk factor.

2.2.1 Family history status

Participants self-reported parental family history statuswith details on

dementia type and age of diagnosis if applicable and known. Reported

parental dementia types from participant history were 86% either AD

or AD with mixed vascular pathology, 5% Parkinson’s or Lewy body

dementia, and the remaining 9% unknown. Participants were classified

as FH+ if they had positive histories on either maternal, paternal, or

both sides. For estimated years to onset of dementia calculations, if

both parentswere diagnosed, the parentwith the earlier onset agewas

used.

2.2.2 APOE ε4 genotyping

GenomicDNAwas isolated fromwhole blood samples collected during

PREVENTvisits andgenotypingwasperformedusing theTaqManpoly-

merase chain reaction (PCR)-based method as previously described.22

Participantswere classed asAPOE ε4+ if they carried either one or two

allele copies.

2.2.3 CAIDE DRS

The CAIDE DRS is a physiological-based risk scoring tool derived

from a prospective cohort study that identified weighted variables in

midlife predictive of future dementia.23 It has since been validated in

additional populations against CSF and neuroimaging measures, with

finalized variables including age, sex, education, hypertension, choles-

terol, physical activity levels, and bodymass index. In this study, CAIDE

score was used without APOE ε4 status to examine the effect of pre-

dominantly modifiable risk factors on navigation performance. It was

used as a continuous variable on a scale of 0 to 15 in all analyses except

for the “out of bounds” trials analysis, in which above/below median

CAIDEgroupswere established. Statistical analysiswith theCAIDEdid

not involve controls for age, sex, and education as they are included

within the score. Cohort baseline measures were used to calculate

scores.

2.3 Virtual reality PI task

All PI task data were collected at the University of Cambridge, the

methods of which have previously been described elsewhere.13

In brief, the task required participants to complete a triangle by

walking between three numbered cones presented sequentially at

eye level within an open field virtual environment viewed through a

head-mounted display. The open field was bordered by navigational

features projected at infinity to represent boundary cues, with no local

landmarks, to prevent use of egocentric beaconing strategies.24 An

auditory stimulus sounded at the appearance of each cone to prompt

participants toward the next cone, and cones disappeared when

reached. After walking the two outward legs to reach cone three from

cone one (the “outward path”), participants were instructed to return

to their remembered location of cone one (the “return path”) and

press a trigger on the hand-held controller. This logged their estimated

location and ended the trial.

To examine the effect of supportive environmental cue availability

on PI performance, three different conditions for the return path were

used. Each condition entailed a change to the environment appearance

whenparticipants reached cone three to initiate the returnpath: condi-

tionA, no changewith all cues available; conditionB, removal of surface

texture; condition C, removal of distal landmarks.13 In addition, three

different environmentswith varying appearancewereused tomaintain

engagement in the task. Participants performed 12 trials per condition,

totaling 36 per participant. Testing time varied from 30 to 60 minutes
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4 NEWTON ET AL.

TABLE 1 Demographics for all participants stratified either by family history or APOE ε4 status.

Family history

positive

Family history

negative

APOE ε4
positive

APOE ε4
negative Whole sample

Characteristic N= 61 N= 38 P N= 32 N= 65 P N= 99

Sex

Female (%) 41 (67%) 23 (61%) 0.60a 19 (59%) 43 (66%) 0.70a 64 (65%)

Age

Mean years± SD (range) 57.1± 5.16 55.8± 5.45 0.20 55.2± 5.46 57.2± 5.14 0.08 56.6± 5.28 (43 – 66)

Education

Mean years± SD (range) 17.0± 3.12 16.8± 2.86 0.70 16.8± 2.86 17.0± 2.93 0.90b 16.9± 3.01 (10 – 24)

Ethnicity

White (%) 31 (97%) 63 (97%) 0.70a

Black (%) 0 1 (2%)

Asian (%) 1 (3%) 0

Indian subcontinent (%) 0 1 (2%)

APOE ε4

Positive (%) 18 (30%) 14 (37%) 0.60a – – 32 (32%)

NA (%) 2 (3%) 0 – – 2 (2%)

Family history †

Positive (%) – – 18 (56%) 41 (64%) 0.60a 61 (62%)

Family history type

Maternal (%) 27 (44%) – 10 (56%) 15 (37%) 0.40a –

Paternal (%) 42 (69%) – 11 (61%) 31 (76%) 0.30a –

Both (%) 8 (12%) – 3 (17%) 5 (12%) 1.00a –

CAIDEDRS

Mean score± SD (range) 5.12± 2.20 4.87± 2.23 0.40b 4.94± 2.33 5.06± 2.16 0.50b 5.02± 2.21 (0 – 11)

NA (%) 3 (5%) 0 0 1 (2%) 3 (3%)

Abbreviations: APOE, apolipoprotein E; CAIDE, Cardiovascular Risk Factors, Aging andDementia Study; DRS, dementia risk score; SD, standard deviation.
aPearson chi-square test.
bWilcoxon rank sum test.
†Parental.

depending on participant walking speed and optional rest breaks. The

order of conditions presented to participants was pseudo-randomized

to remove order effects and ensure participants did not become over

reliant on external allothetic versus idiothetic cues to solve the task.

The locations of cones and configuration and size of triangleswere also

pseudo-randomized.

The task was administered with immersive VR using the HTC Vive

VR hardware system and Steam VR software. Initially, this was run on

the MSI VR One laptop with Intel Core i7-7820HK, 16GB RAM, and

GeForce GTX 1080, which was worn as a backpack to enable free,

untethered participant movement during the task. However, equip-

ment failure during data collection necessitated replacing the laptop

with the Dell Desktop PC Precision 6820 Tower X-Series with Intel

Core i9-10900 and GeForce RTX 2080. To enable free movement, the

Vive Wireless Adaptor was additionally used. External base stations

mapped out a 4 × 4m2 virtual test space within which participant loca-

tion and task responseswere trackedwith a sampling rateof0.1 second

to provide raw coordinate data. Triangle return path distances ranged

from 3.6 to 4 m to vary PI difficulty and at least 1 m of clear space

bordered the test space. For safety precautions, a researcher was in

close proximity at all times, and an “out of border” warning message

appeared in participants’ line of vision to discourage walking if they

moved 30 cm beyond the test space border (see SupplementaryMate-

rials in supporting information). Prior to the task start, participants had

the opportunity to explore the environment in a short 20 second habit-

uation period and complete five practice trials for which feedback on

performance was given. Participants were instructed to complete the

task as quickly and accurately as possible, usingwhatever strategy they

liked, but were discouraged from retracing their outward path via cone

two to estimate where cone one was. No performance feedback was

given during the remaining trials.

2.4 Comparator neuropsychological tests

During PREVENT study visits, participants completed the digital

computerized assessment of adult information processing (COGNITO)
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NEWTON ET AL. 5

test battery25 and additional stand-alone cognitive assessments

to assess global and individual cognitive domain function. In this

study, measures of allocentric (4 Mountains Test [4MT])26 and

egocentric (Virtual Supermarket Trolley Task [VSTT])27 processing,

episodic and visual association memory (Visual Short-Term Binding

Test; COGNITO Name-Face Association and Narrative Recall),6 and

global cognition (Addenbrooke’s Cognitive Exam III)28 were selected

from these PREVENT assessments to compare to PI, for which the

administrative procedures and task details have previously been

described.

2.5 MRI acquisition

MRI data were acquired on a 7T Terra MR system (Siemens) with a

NovaMedical 1Tx/32Rxhead coil at theWolfsonBrain ImagingCentre,

University of Cambridge. Sequences were aligned to the 7T UK har-

monization protocol.29 First, awhole brain T1-weightedmagnetization

prepared 2 rapid acquisition gradient echo (MP2RAGE) volume was

obtained (repetition time [TR] 3500 ms, echo time [TE] 2.58 ms, inver-

sion time [TI] 1= 725ms, TI 2= 2159ms, resolution 0.7 mm isotropic,

generalized autocalibrating partial parallel acquisition [GRAPPA] = 3,

matrix size = 224 × 224 × 157, flip angle [FA] 1 = 5◦, FA 2 = 2◦).

Second, a high-resolution partial T2-weighted structural volume was

obtainedwith slices orientated perpendicular to hippocampal long axis

(TR 8080 ms, TE 76 ms, resolution 0.4 mm x 0.4 mm, slice thick-

ness 1 mm + 10% gap, GRAPPA = 2, matrix size = 224 × 224 × 54,

FA = 60◦). Finally, the fMRI session was run using T2*-weighted gra-

dient echo planar images (EPIs) with an in-plane resolution of 1.5 mm

x 1.5 mm (42 axial slices, TR 2531 ms, TE 22 ms, slice thickness 1 mm,

GRAPPA= 2, FA= 73◦, matrix size= 192× 192× 42). Slices were cen-

tered on and orientated parallel to the hippocampus long axis. Higher

between-plane resolution aimed to minimize dropout due to partial

volume effects, while lower within-plane resolution aimed to increase

signal-to-noise ratio. Total scan timewas 75minutes.

2.6 MRI pre-processing and analysis

T1-weighted structural images were produced via offline PSIR (phase-

sensitive inversion recovery) reconstruction on all MP2RAGE data.

T1-weighted and T2-weighted images were manually inspected for

artifacts and bias field corrected using the N4 algorithm.30 The EPI

serieswere preprocessed using FSL v5.0.8 (FMRIB) and SPM12 (http://

www.fil.ion.ucl.ac.uk/spm/) in MATLAB 2019a (MathWorks). First,

images were manually inspected for artifacts and corrected for dis-

tortions using a reverse phase encoded method via FSL-topup.31 EPIs

then underwent motion correction with SPM realign, reslice, and slice

time correction to account for differences in interleaved slice acqui-

sition times. All analyses were carried out on native space images to

prevent potential signal distortions during non-linear normalization to

a common space. All images (EPIs T1-weighted and T2-weighted) were

co-registered using the default Advanced Normalization Tools (ANTs)

linear transformations.32 In cases of registration failure, images were

manually co-registered in ITK-SNAP.33

Regions of interest (ROIs) were selected a priori either due to their

hypothesized role in navigation functions or early susceptibility to

pathology in initial AD stages. These included thewhole and posterior-

medial EC, hippocampal subfields (subiculum and CA1), retrosplenial

cortex, and posterior–cingulate cortex. For non-medial temporal lobe

ROIs, T1-weighted images underwent normalization to MNI305 atlas

space, brain extraction, tissue segmentation (CSF, gray matter, white

matter), and parcellation according to the Desikan–Killiany atlas using

the FreeSurfer image analysis suite (v7.1.0, https://surfer.nmr.mgh.

harvard.edu/). Pial surfacemisplacements and erroneouswhitematter

segmentation were manually corrected on a slice-by-slice basis if indi-

vidual brain processing failed. The isthmus cingulate ROI was used as a

proxy retrosplenial cortex ROImask following previous work.13

Medial-temporal ROIs were created in the subject’s T2-weighted

space using a semi-automatic approach with the Automatic Seg-

mentation of Hippocampal Subfields (ASHS) software V2.034 and

IKND Magdeburg 7T multi-template atlas.35 ASHS outputs per hemi-

sphere per participant were manually inspected and corrected. This

included erroneously included CSF and meninges voxels or misplaced

gray/white matter or anterior/posterior borders judged using estab-

lished heuristic rules.34,35 Specifically, for the posterior–medial EC,

which is not available inASHS, a publicly available common-spacemask

based on diffusion tensor imaging connectivity36 was used to man-

ually trace posterior–medial EC voxels visible on the high-resolution

T2 using ITK-SNAP.33 The mask was warped into individual native

space via (1) average group T1-weighted template made using the

opensource toolkit ANTs (v2.3.4) diffeomorphic template construc-

tion algorithm37 and (2) individual participant T1- and T2-weighted

images, all co-registered and transformed using ANTs.32 In some par-

ticipants thewarped common space posterior–medial entorhinal mask

extended anteriorly beyond the field of viewof the T2-weighted image;

these voxels were not included in the final ROI mask. Manual segmen-

tation was performed by two raters with an average Dice similarity

coefficient across all ROIs for five subjects of 0.92, indicating good

inter-rater reliability.

2.7 fMRI grid cell task

The grid cell functional task was presented as three blocks of a 10

minute video followed by a short memory test. The video required

participants to watch themselves be passively navigated through a vir-

tual room from a first-person perspective and learn the locations of

seven target objects in the room. Target objects were everyday, house-

hold items and were highlighted by a hovering orange cone above

them. Objects appeared progressively as movement within the video

proceeded to cover the entire space. Movements were sequences

of forward translations and rotations of varying angles. Passive par-

ticipant viewing without movement control aimed to reduce motion

induced through use of a joystick or button box and control the degree

of room exploration per participant. The virtual room consisted of four
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6 NEWTON ET AL.

gray walls decorated with different items to provide orientation cues,

which stayed the same across all three videos—only the target objects

within the room changed. When the video ended, participants were

shown three images per each object from the room; one in the correct

object location and two distractor images. Participants were required

to select the correct image via a corresponding button on the button

box, with accuracy and reaction time recorded. The next block began

after the set of object location questions ended. The grid cell task was

programmed inUnity software (V2018.2.9f1) andwas presented on an

MRI-compatible LCD screen that participants viewed through amirror

mounted on the head coil at an angle of 14◦. Before scanning, partic-

ipants were given verbal instructions and shown a 3 minute practice

video of the task. Participant position and heading directions were

sampled roughly every 20 ms during the video, which enabled us to

approximate grid event timestamps, with all participants viewing the

same video per block.

2.8 Statistical analyses

Statistics were performed in R v4.0.4 using the lme438 and emmeans39

packages.Differencesbetweenparticipantdemographicsbasedon risk

factor and sex stratificationwere assessedvia t tests or non-parametric

Mann–Whitney U test for continuous variables (depending on the

normality of the data), and chi-square test for categorical variables.

Where appropriate in the following sections, all model residuals were

inspected for deviations from homoscedasticity and normality.

2.8.1 Virtual reality PI task

All outcome measures and variables were extracted and calculated in

MATLAB 2019a. Each trial was manually inspected for data integrity.

Trials in which participants adopted a “retracing” strategy or did not

initiate the return path were excluded (0.6% of total trials). Trials in

which participants went beyond the virtual test space boundary (“out

of bounds”) were also excluded (34.6% of total trials), in line with

previous work.13 These trials were qualitatively different to normal

trials, as participants received an extra spatial cue informing their cur-

rent position when the boundary was reached. We used chi-square

tests to assess if proportions of out-of-bounds trials differed between

stratified groups, and a variety of control analyses to assess whether

the exclusion of trials impacted the main findings (see Supplementary

Materials).

Following previous research,40,41 the primary outcome measure

for the PI task was Location Error in virtual meters, reflecting the

Euclidean distance between estimated and actual locations of cone

one. We calculated distances using Equation (1), with coordinates of

cone one estimated (X1,Y1) and true (X2,Y2) locations for Location

Error:

Distance =

√
(X1 − X2)

2
+ (Y1 − Y2)

2
(1)

First, an interaction effect of all risk factors, return condition type,

and sex on location error was assessed via a mixed linear model in

accordancewith our primary research question.We chosemixedmod-

eling given the clustered and incomplete nature of the data (12 trials

per one of three return conditions, with out-of-bounds trials excluded),

in line with previous PI literature.8,13 Covariates included age, years

of education, and a random intercept of (1) trial order number and (2)

unique participant identifier with random slopes of return condition

type to assess for participant variance across repeated trials.

In a second analysis we used multiple linear regression models to

explore the change in average performance across conditions based

on interactions of condition types in the mixed model results. We sep-

arately predicted change in location error between baseline and no

optic flow conditions and between baseline and no distal cues condi-

tions; in each case mean baseline performance was subtracted from

the other conditions per participant to derive the outcome measure.

An interaction effect of all risk factors and sex on this change in mean

location error was examined in accordance with our primary research

question. Covariates included age and years of education. Interac-

tion effects were tested with analyses of variance (ANOVA) tests and

post hoc contrasted pairwise using t tests Tukey-corrected formultiple

comparisons.

Two additional outcome measures of Absolute Angular and Dis-

tance Error decomposed the Location Error into linear and rotational

error contributions. Distance error reflects the accuracy of partici-

pant distance estimation of the return path length andwas determined

using the absolute values of Dtrue – Destimated, where Dtrue refers to the

true distance between cone three and cone one, and Destimated the par-

ticipants’ estimated distance between cone three and their triggered

position. Angular error reflects the accuracy of participant rotation at

cone three to return to cone one and was determined using the abso-

lute values of Atrue – Aestimated, where Atrue refers to the true rotation

angle from cone three and cone one, and Aestimated the participants’

estimated angle between cone three and their triggered position. Each

angle (𝜃) was calculated using Equation (2):

𝜃 = atan2d
(
⃖⃗v1 × ⃖⃗v2, ⃖⃗v1 . ⃖⃗v2

)
(2)

where ⃖⃗v1 represents the trajectory vector between cones two and

three, ⃖⃗v2 the vector between cone three and either the true or esti-

mated locationof coneone. atan2d is aMATLAB function that takes the

arctangent (in degrees) of the cross and dot product of two vectors to

derive the angle between them. Another series of mixed linear models

with the same covariates and predictors were used to assess the effect

of risk factors and sex on change in absolute angular and distance error.

We created a signed allocentric angular error outcome measure to

assess the directionality of angular errors. The angular difference was

mapped in the interval [−180◦, 180◦] using the MATLAB wrapto180

function as wrapTo180(Atrue − Aestimated). Therefore, negative values

indicate overturning in the allocentric point of view, whereas posi-

tive values indicate underturning in the allocentric point of view. For

instance, if Atrue = 120◦ and Aestimated = −220◦, then the signed allo-
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NEWTON ET AL. 7

centric angular error will be −20◦ (an overturning of 20◦), whereas

the absolute angular error is 340◦. We additionally calculated this

for out-of-bounds trials by taking the position of the boundary col-

lision as a proxy measure of initial angular estimate for the return

path. This enabled us to circumvent the data bias of overturning

errors introduced by excluding out-of-bounds trials (see Supplemen-

taryMaterials).

Finally, we used ANOVA nested model comparison to explore the

proportion of variance explained by different risk factors.We repeated

the above linear regression models on change in performance from

baseline to “no distal cues” using individual risk factors interactingwith

sex, controlled for age andeducation.Weconducted F tests to compare

adjusted R2 between each of these models against the full model used

above.

2.8.2 Comparator neuropsychological tests

We used multiple linear regression models to explore interactive

effects of all risk factors and sex on task performance for the compara-

tor assessments, in keeping with the PI analysis. We additionally ran

separate linear regression models per individual risk factor to explore

univariate effects. Covariates always included age, years of education,

and PREVENT visit date to confirm that differences in time-locking

across visit dates for PREVENT cognitive assessments and the PI study

participation did not affect results. To compare the relative predic-

tive value of PI to other assessments, we performed cross-validated,

logistic regression using elastic-net regularization to optimize the area

under the curve (AUC) of the receiver operating characteristic (ROC).

We predicted a “double-risk” status (FH+/APOE ε4+ vs. any other com-

bination, based on earlier model performance) using performance on

the VR PI task (viz. change in location error from baseline to “no distal

cues” condition) plus performance on the other tasks explored above,

aswell as age, sex, and education.We used 1000 randompermutations

of training versus test.

2.8.3 ROI structure

For theMTLROIs, regional T2-weighted volumeswere extracted using

the Insight Toolkit Convert3D software (www.itksnap.org/c3d). T1-

weighted isthmus cingulate and posterior cingulate regional volumes,

as well as T1-weighted total intracranial volume, were extracted using

FreeSurfer v7.1.0 (as described above). To reduce multiple compar-

isons, volumes from the left and right hemisphere were summed, and

to correct for variations in brain size, volumeswere expressed as a per-

centage of total intracranial volume to estimate relative gray matter.

We ran an additional analysis using raw volumes with total intracranial

volume as a covariate to confirm this analysis approach did not alter

results.

First, we used multiple linear regressions predicting each individ-

ual ROI per each individual risk factor (FH, APOE ε4, CAIDE) to assess

effects of risk on brain structure. We then used a three-way interac-

tion between each ROI volume, risk factor status, and sex to predict

change in location error across conditions to assess effects of risk on

brain–behavior relationships established in earlier analyses. All mod-

els had covariates of age and years in education. The false discovery

ratemethodwas used to correct for plannedmultiple ROI comparisons

per each risk factor and response variable.42

Finally, to establish if multivariate contributions of all ROIs better

explained structural brain–behavior relationships, we used a multiple

regression with all ROIs as predictors with age, sex, and education

covariates.

2.8.4 fMRI grid-cell-like representations

Putative measures of grid cell codes were extracted from the pre-

processed EPIs using a reproducible, standardized approach with

the GridCAT v1.0443 and CircStat44 toolboxes in MATLAB (2017b,

MathWorks) and SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). The spa-

tial properties of the grid patterns and the non-linearity of themapping

from location through neural activity to the macroscopic blood oxy-

gen level–dependent (BOLD) fMRI signal suggest that grid population

activity could be detectable in fMRI. Namely, the orientations of the

grid-firing patterns of both local and distant grid cells are clustered,

despite differences in grid scale.45,46 Thus, the different neural fir-

ing dynamics when running in directions aligned versus misaligned

to grid axes (i.e., some cells firing a lot, others a little, vs. all cells

firing an intermediate amount) would generate different fMRI signal

strengths.47

Data analysis here used two general linear models with parametric

modulators of sin and cos to (1) estimate individuals’ grid orientation

(in 60◦ space) using the time-varying translation events in half of the

data, and (2) derivemeasures of model fit using this estimated orienta-

tion for modeling translation events in the remaining data. Data were

partitioned using odd/even translation events and nuisance regres-

sors for head movement were included in the general linear models.

Only voxels masked by the right posterior–medial entorhinal sub-

division mask were used to calculate outcome metrics, in line with

previous findings.7,8,47 The primary outcome measure was grid cell–

like representation magnitude, in which a higher magnitude entailed

better fit of the general linear model for the estimated mean grid

angle.43 Secondary measures of between-voxel orientation coherence

and within-voxel orientation coherence over time, respectively, pro-

vided measures of spatial and temporal stability. Spatial stability was

calculated using Rayleigh test for non-uniformity of circular data using

voxelwise mean grid orientations. Temporal stability was calculated

by comparing orientation values within voxels between the first and

second half of each scanning run, expressed as the percentage of vox-

els with a change of less than 15◦ in orientation. We included these

secondary measures because temporal but not spatial stability was

demonstrated to be the cause of low-magnitude grid codes in young

APOE ε4 carriers relative to non-carriers.7
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8 NEWTON ET AL.

The fMRI grid outcome metrics were normally distributed, so one-

sample t tests were used to assess if magnitudes and spatial stabilities

of grid cell–like representations were significantly different from zero

and if temporal stability was significantly different from chance (50%)

across all participants. Differences in metrics between FH/APOE ε4
risk groups and sex were compared using Welch two-sample t tests

given unequal varianceswhile associations betweenmetrics and age or

CAIDE lifestyle risk score were calculated with Pearson correlations.

We used multiple linear regression models to test if (1) metrics

predicted change in location error from baseline to no distal cues

conditions and following on from this (2) if a three-way interaction

between grid cell–like representation magnitude, risk status, and sex

modulated this relationship.Wealwaysused covariates of age andedu-

cation, and sex additionally in the first regression models. To assess

the continuous× continuousCAIDE interactionwith grid-activitymag-

nitude, we used Johnson–Neyman intervals to explore the range of

CAIDE values for which the association between grid activity and PI

performance was significant.

We additionally performed a range of control analyses (see Sup-

plementary Materials). Grid cell–like representation magnitudes were

calculated using either four-fold, five-fold, or seven-fold rotational

symmetry (instead of expected six-fold) to confirm the specificity of

the grid-characteristic patterns, and a one-fold (or unimodal) grid pat-

tern in an exploratory analysis. Temporal signal-to-noise ratio for the

posterior–medial EC was calculated by dividing voxel-wise mean time

series by its standard deviation, and this was associated against grid

cell–like representationmagnitudes using Pearson correlation.

3 RESULTS

3.1 PI impairments across risk factors

While we found no overall main effects of FH, APOE ε4, or CAIDE

score on location error when modeling individual trials with a mixed

model approach (all F≤1.17,P≥0.283), several significant interactions

among risk factors, return condition, and sexwere present (all F≥ 2.90,

P ≤ 0.050). To study these further, we examined performance on each

of the two manipulated return conditions relative to baseline (which

additionally controls for individual differences in overall performance;

Figure 1A) using linear regression to assess the interactive effects of

all risk factors and sex together. We found significant worsening of PI

performance after removal of the distal orientation cues (return con-

dition three) across all individuals with elevated AD risk; namely, both

a main effect of CAIDE (F1,77 = 11.04, P = 0.001; Pearson’s r = 0.30,

P = 0.003; Figure 1B) and two-way interaction effect of family history

and APOE ε4 status (F1,77 = 8.43, P = 0.005; hereditary x physiological

interactions all P > 0.303). There were no effects of age or education

(both F < 1.32, P > 0.254; see Table S3 in supporting information for

FH/APOE ε4 demographic breakdown). Post hoc analyses on the two-

way interaction showed that worsening performance was greatest in

individuals with both FH+ and APOE ε4+ (all t ≥ 3.28, PTukey ≤ 0.008;

Figure 1C).

We additionally found that both FH and APOE ε4 also interacted

with sex (both F ≥ 8.11, P ≤ 0.006), with detrimental risk effects

specifically occurring in males (Figure 1D). We further explored the

male-specific FH+ effect using estimated years to onset of dementia

(EYOD), a temporal marker of preclinical state based on the difference

between participant age and their parental age of dementia onset. In

this cohort with a mean EYOD of 19.3 years, lower EYOD correlated

with greater location error on the no distal cues condition (Pearson

EYOD r= 0.55, P= 0.010; age r= 0.16, P= 0.300).

We confirmed these combined risk factor and sex-specific results

by comparing the explained variance to simpler models (Table S4 in

supporting information). The full model explained significantly more

variance than the same model without a sex interaction (F77,84 = 3.05,

P = 0.007; adjusted R2 = 0.26). It also explained more variance than

separatemodelswith individual risk factors (all F77,90 ≥2.84,P≤0.002;

all individual models adjusted R2 < 0.06), but not more than the

same model with CAIDE omitted (F77,85= 1.85, P = 0.081; adjusted

R2 = 0.20). This may suggest that the relationship between distal cue–

dependent PI performance and AD risk was predominantly driven by

hereditary-related risk factors of family history and APOE ε4 status,

rather than themore physiological-related CAIDE score.

3.1.1 Decomposing PI impairments

In contrast to the third “no distal cues” condition, performance dif-

ferences between baseline and “no optic flow” conditions (return

condition two) were borderline significant for hereditary but not phys-

iological risk factors (two-way FH x APOE ε4 F1,77 = 4.42, P = 0.039;

post hoc pairwise tests all PTukey>0.138; Figure 1E), indicating that the

PI impairment observed across all AD risk groups related specifically

to orientation cue removal. To understand this impairment further,

we decomposed location error into absolute distance and angular

error (Figure 2A). Using the same risk factor × sex model, we found

that orientation-related location errors in the at-risk individuals were

driven by angular not distance errors, with the same main effect of

CAIDE (angular errorF1,77=10.42,P=0.002; distanceerrorP=0.500;

see Figure 2B for correlations) and two-way interactions of FH and

APOE ε4 together or individually with sex (angular error all F> 4.88,

P < 0.030; distance error all P > 0.360; Figure 2C). By wrapping

the return angles of each trial to [−180,180] allocentric space, we

determined that angular errors resulted from over- rather than under-

turning (Figure S1; see Figure S2-S3 in supporting information for

control analyses).

3.1.2 Performance on comparator spatial and
nonspatial tests

For comparison, we tested other cognitive domains affected in preclin-

ical AD (Table 2). Episodic memory, historically considered the domain

first affected in AD,was assessed for non-verbal name-face associative

memory,25 visual short-term memory binding,6 and verbal narrative
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NEWTON ET AL. 9

F IGURE 1 Hereditary and physiological risk factor PI impairments. A, The PI task schematic and three return condition types. B, Higher
CAIDE dementia risk score significantly correlated with decline in performance (viz. increase in location error) on no distal cues condition relative
to baseline in both sexes. C, Decline in performance on no distal cues relative to baseline was largest in FH+/APOE ε4+. D, FH+ and APOE ε4+
performance decline on no distal cues relative to baseline was specific tomales (combined for display). E, FH+/APOE ε4+ or CAIDE (not pictured)
decline in performance on no optic flow condition relative to baseline was not significant. ** PTukey < 0.01. APOE, apolipoprotein E; CAIDE,
Cardiovascular Risk Factors, Aging andDementia Study; FH, family history; PI, path integration

recall. Global cognition was indexed with the Addenbrooke’s Cogni-

tive Exam III.28 Other aspects of spatial behavior were tested with

the VSTT of egocentric spatial orientation,27 reflecting medial parietal

lobe function and pertinent given early amyloid beta (Aβ) deposition in
this region, and the hippocampus-dependent 4MTof allocentric spatial

memory.26

Unlike PI, we found no combined interactive effects of FH, APOE

ε4, or CAIDE on the performance of any individual comparator task

(all P ≥ 0.14; Table S5 in supporting information), but some individual

risk factor effects were present. For episodic memory, no individuals

at increased risk, regardless of risk factor, exhibited impairments on

narrative recall or visual short-termbinding (allP≥0.100)while name–

face association selectively correlatedwithCAIDEscore (F1,79=21.28,

P < 0.001; Pearson r = 0.41, P < 0.001). For spatial tests, only family

history status had an effect, with FH+ individuals performing worse

on the 4MT (F1,74= 9.33, P = 0.003). Finally, when risk factors were

separately modeled in individual risk factor x sex interaction univari-

ate models, female FH+ performed worse than FH– on the VSTT

(t92 = 3.12, PTukey = 0.013; two-way interaction FH x sex F1,92 = 7.42,

P= 0.008).

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13733 by C

am
bridge U

niversity L
ibrary, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 NEWTON ET AL.

F IGURE 2 Angular rather than distance errors contributed to risk factor–associated impairment of PI after removal of distal orientation cues.
A, Schematic of angular error (left) and distance error (right) calculations. B, CAIDE dementia risk score correlated with change in angular but not
distance error from baseline to no distal cues. C,Multi-hereditary risk interacted with sex for angular but not distance error changes in PI.
*PTukey < 0.05. APOE, apolipoprotein E; CAIDE, Cardiovascular Risk Factors, Aging andDementia Study; DRS, dementia risk score; FH, family
history; PI, path integration

We next compared the ability of the PI task to predict “double-risk”

status (FH+/APOE ε4+ vs. any other combination) to that of the other

cognitive tests via cross-validated logistic regression using elastic-net

regularization to optimize the AUC of the ROC. Though themean AUC

across 1000 iterations was only 0.67, 93% of iterations included a non-

zero contribution from PI performance, whereas < 1% of iterations

included a non-zero contribution from any other cognitive test. When

age, sex, or education were used as predictors, the mean AUC was

0.56. In summary, PI was the only behavior predictive of multifactor

hereditary AD risk.

3.1.3 Structural MRI correlates of PI impairments

In a subset of 54 participants (Table S2), ultra-high field 7T MRI was

used to assess the volume of brain ROIs associated with both naviga-

tion and early AD, namely the EC–hippocampal subfields, retrosplenial

cortex, and posterior cingulate gyrus.48 There were no significant dif-

ferences in regional volumes between high- and low-risk participants

across individual or interacting risk factors after multiple compari-

son correction (all PFDR> 0.183; Table S6 in supporting information).

When predicting change in performance from baseline to no distal

cues, after adjusting for age, education, and sex, there was no effect of

any ROI independently, or interaction betweenROI and risk factors (all

PFDR > 0.360), or even a combined effect when adding all ROIs into a

single linear model (F14,37= 1.39, P= 0.208).

3.1.4 Functional MRI correlates of PI impairments

We used a spatial memory paradigm previously found to elicit grid-

like fMRI signals in the EC49 (Figure 3A). We focused on the right
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NEWTON ET AL. 11

TABLE 2 Summary of findings: Path integration versus other cognitive domain performance association withmidlife dementia risk.

Exam Metrics used Relevant cognitive domain

Multivariate

risk factor

performance

associations

Immersive virtual reality path

integration task

Location error (m) Entorhinal path integration

navigation

FH, APOE ε4,
CAIDE

Addenbrookes Cognitive Exam III (ACE) Total score/100 Global muti-domain cognitive

function

–

Visual short-term binding test (VSTBT) A’ of shape-color binding

performance

Non-verbal frontal and temporal

associativememory

–

FourMountains Task (4MT) Total score/15 Hippocampal allocentric spatial

memory

FH

Virtual Supermarket Trolley Task (VSTT) Total orientation score/20 Retrosplenial egocentric spatial

memory

–

COGNITOName–face association Total score/9 Non-verbal medial–temporal

paired associativememory

CAIDE

COGNITONarrative recall Total score/27 Verbal medial–temporal episodic

memory

–

Abbreviations: APOE, apolipoprotein E; CAIDE, Cardiovascular Risk Factors, Aging andDementia Study; FH, family history; PI, path integration .

posteromedial EC, the human homologue of rodent medial EC where

most grid cells are resident and where fMRI signal was reduced in

APOE ε4 carriers7 and healthy older versus younger adults.49 Adopt-

ing a similar analysis procedure with partitioning by odd/even grid

events,43 we found that hexadirectional grid-like fMRI signals were

not significant in the population overall (one-way t test t52= 0.50,

P = 0.600), but individuals with greater signals showed smaller PI

performance declines from baseline to no distal cue conditions (β
= −0.27 ± 0.10, t46 = 2.66, P = 0.011; Figure 3B). Risk factors alone

had no effect on the signal magnitude (all main and interaction effects

P > 0.131). However, PI performance was predicted by a two-way

interaction between the continuous CAIDE score and grid-like sig-

nal (F1,45 = 4.20, P = 0.046; Johnson–Neyman interval significant for

CAIDE > 7 β = −0.47 ± 0.15, t45 = 3.17, P < 0.001; no hereditary

x CAIDE risk interaction; Figure 3D) and by three-way interactions

among individual hereditary risk factors, sex, and grid-like signal (FH

interaction F1,41 = 4.16, P = 0.048; APOE ε4 interaction F1,41 = 3.52,

P = 0.068; Figure 3C). Including grid-like fMRI signal as a predic-

tor in these models provided a better fit for the PI behavioral data

than null models without fMRI inclusion (all F > 3.42, P < 0.017; for

controls see Supplementary Materials), suggesting that impaired PI

performance across risk groups was associated with altered grid-like

fMRI signal in the posteromedial EC. More specifically, the higher risk

individuals with poorer PI performance showed negative hexadirec-

tional grid-like activity magnitudes. Negative magnitudes related to

grid-like signal drift over time have been reported in healthy individu-

als and APOE ε4 carriers with poorer PI ability.7,8,49 However, negative
grid magnitudes due to temporal signal drift were not consistent with

our data partitioning procedure, which used interleaved odd/even grid

events to create estimation and test data sets. We hypothesized that

non–6-fold symmetries might have contributed to the negative grid

magnitudes after observing unbalanced directional sampling between

partitioned sets, whichwe explored in a supplementary analysis.While

there were no effects of 4-, 5-, or 7-fold symmetries on PI perfor-

mance (all P > 0.270), we found that a unidirectional signal consistent

with head direction–like processing predicted poorer PI performance

after removal of distal orientation cues (β = 0.31 ± 0.09, t46 = 3.50,

P = 0.001; Figure 3E), complementing in reverse the sex and AD risk

effects observed with the hexadirectional grid-like activity (Figure 3C

and F). Across male participants only, this unidirectional signal sig-

nificantly clustered around a mean direction of 181◦ (Figure S4 in

supporting information; SupplementaryMaterials).

4 DISCUSSION

Determination of initial cognitive changes in asymptomatic individuals

at risk of developing AD is a key aspect of identifying the clinical

onset of AD. The importance of this identification is amplified by the

advent of drug therapies with disease-modifying potential, given the

increasing evidence that such interventions may be most efficacious

if applied in the earliest stages of disease. The entorhinal cortex

(EC) is involved from the initial stages of AD, and that EC grid cells

play a crucial role in path integration (PI), we tested the hypothesis

that PI was affected in people at risk of AD prior to the onset of

symptoms and prior to impairment in other cognitive domains. Con-

sistent with this hypothesis, we found that asymptomatic individuals

at risk of AD, due to either hereditary or physiological risk factors,

were selectively impaired on a test of PI. Crucially, we did not find

a similar impairment in other aspects of spatial behavior (allocen-

tric spatial memory or egocentric spatial orientation) or in tests of

episodic memory, including a test of visual short-termmemory binding

found previously to be impaired in people with presymptomatic

familial AD.

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13733 by C

am
bridge U

niversity L
ibrary, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 NEWTON ET AL.

F IGURE 3 Right posterior–medial entorhinal fMRI correlates of decline in path integration performance. A, Image of object memory location
fMRI task. B, Greater change in location error from baseline to “no distal cues” return condition associated with lower 6-fold grid-like activity,
which reflects behavioral findings of showing a stronger effect in males with hereditary risk (C) or individuals with a higher CAIDE score (D). High
risk is defined as FH+/APOE ε4+ and low risk as individual or no FH/APOE ε4 risk factors. E, The negative 6-fold grid magnitudes in (B,C) might
relate to a unidirectional head direction-like signal, which was stronger in individuals that showedworse PI in the absence of orientation cues.
Again, this appeared specific to males with hereditary risk (F) in an exploratory analysis. APOE, apolipoprotein E; CAIDE, Cardiovascular Risk
Factors, Aging andDementia Study; FH, family history; fMRI, functional magnetic resonance imaging; PI, path integration

Two other observations underscore the significance of these data.

First, the cohort studied were aged between 43 and 66 years andwere

approximately two decades younger than their estimated age of onset

of dementia, indicating that this navigational impairment significantly

predates clinical diagnosis. Second, impaired PI was observed in at-risk

individuals across a variety of different risk factors for AD, indicat-

ing that the effect is not specific to any individual risk factor—such

as APOE ε4—or the underlying physiological mechanism causing the

specific risk, but is a general effect, in turn raising the possibility that

impaired PI may represent the inflection point in the AD trajectory

from at-risk status to disease onset.

The demonstration of an early deficit on a behavioral task based on

EC function is consistent with neuropathological studies showing that

theEC is the first neocortical site to exhibit neurodegeneration inAD50

and with animal studies showing that AD pathology in the EC is asso-

ciated with disruption of neuronal activity and spatial memory.12 The

importance of the EC in the AD pathological cascade has recently been

underscored by the publication of a case report51 describing a mem-

ber of the world’s largest known kindred with autosomal dominant

AD due to the PSEN1-E280Amutation, whowas additionally heterozy-

gous for a rare mutation in the RELN gene encoding reelin and whose

age of dementia onset was delayed by almost three decades com-

pared to other kindred members. PET imaging revealed widespread

Aβ and tau deposition but limited tau tangles in the EC. This relative

preservation of the EC in an individual resilient to familial AD, allied to

the observation that layer II EC projection neurons express reelin sig-

naling within tau phosphorylation regulation pathways,52 raises new

questions about the importance of studying behavioral readouts of EC

function not just for early AD detection but also for the development

of future therapeutic interventions.50

The specific PI deficit after removal of orientation cues when only

self-motion cues are available is consistent with grid cell stability being

dependent on environmental boundaries.53 This imitates PI deficits in

APOE ε4carriers andmay reflect difficulty in grid anchoringor an inabil-

ity to use a “purer” PI strategy.7,8 This is consistent with previous work

demonstrating the importance of natural locomotion for more accu-

rate judgments of direction in humans and more robust spatial cell

activity in rodents.54–56 Additionally, our observation that defective

angular estimation drove PI errors is also in line with increasing evi-

dence that spatial navigation is underpinned by neuronal vector-based

coding.57,58 Furthermore, we uncovered a sex effect, with hereditary

at-risk males preferentially impaired on PI, and a tentative univariate

observation of a FH+ female impairment on the egocentric VSTT task.

This may reflect sex differences in navigational strategy, with females

tending toward landmark or route navigation, and males survey-based

allocentricmapping20 butmay also reflect sex differences in ADpatho-

logical spatiotemporal progression, with greater early parietal tau

pathology in females.19

Given that grid cell functioning is dependent on head direction,

vestibular and optic flow information relayed to the EC via afferents
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from various brain regions including those affected in early AD, such as

the medial temporal and parietal lobes,48 the PI impairment observed

across hereditary and physiological risk factors for AD might reflect

the unique vulnerability of the entire grid cell/PI network to disparate

converging pathophysiological processes. These encompass tau depo-

sition in theMTL,Aβ in themedial parietal lobe, andvascular pathology,

all of which are associated with family history of dementia, APOE

ε4, and CAIDE score.15,59,60 Amyloid- and tau PET, alongside mark-

ers of vascular pathology, will help clarify the relative contributions of

thesedifferingpathologies toPI impairments. The relationshipwith tau

pathological burden, in particular, will be clarified in follow-on stud-

ies, building on the recent observation that CSF tau levels predicted

allocentric spatial memory performance using the 4MT.61

Multimodal MRI using ultra high field 7T was undertaken to iden-

tify the potential neural correlates of the PI impairments. Structural

MRI did not reveal any associations between PI and volumes of brain

regions of interest, even at subfield level. This, however, is consistent

with previous findings in presymptomatic familial AD populations62

and prior PREVENT imaging studies, which did not identify clear pat-

terns of atrophy.63 Considering our participant age (approximately

two decades away from predicted dementia onset), the absence of

volumetric change may indicate an absence of regional neurodegen-

eration in this cohort at this early stage in the disease process. By

comparison, fMRI studies revealed an association between negative

hexadirectional grid-like fMRI signal in the posterior–medial EC and

PI impairment in hereditary and physiological at-risk individuals. Fur-

ther analyses aiming to understand better this negative signal revealed

instead a strong unidirectional modulation of the fMRI signal. This

functional imaging change may be indicative of a change in naviga-

tional strategy with increased reliance on a head direction–based

approach to navigation.64 An overreliance on visual-based head direc-

tional signals during the outbound triangle path, at the detriment of

performing accurate distance coding, could result in an angular repro-

duction error during the return path10—which was accentuated when

distal orientation cues were removed.

Limitations in our study design include the variable time-locking

between PREVENT cognitive testing andPI assessment, whichwe con-

trolled for by including study visit as a nuisance regressor in regression

models, and the relatively small sample size for exploring interactive

risk factor effects in midlife, which warrant replication in a larger

scale study with biomarkers. We also highlight the high proportion of

excluded “out-of-bounds trials” (see Supplementary Materials), which

occurreddue to limitations of space available to conduct theVRassess-

ment. This is a critical drawback of future potential use of technologies

suchasVR in clinical settings.Although risk factorswerenot associated

with significantly increased rates of excluded trials, the propensity of

individuals to search beyond the test area may in itself be indicative of

impaired wayfinding abilities, which could be explored in future work.

In conclusion, these results indicate that impaired PI may be the ini-

tial behavioral change in AD, prior to memory decline, and as such may

represent the critical point transition from at-risk status to clinical dis-

ease onset. In addition to the benefits for clinical practice in terms of

early detection and optimizing future therapeutic interventions, these

discoveries using a test based on the function of EC grid cells aid trans-

lational research in delivering a platform by which studies of AD at the

cellular level may be linked to understanding the onset of the clinical

disorder.
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