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Executive Summary 
 

Background: 

The entorhinal cortex (EC) is the first brain region to exhibit neurodegeneration in 

Alzheimer’s disease (AD). As such, tests of EC function may help aid detection of the 

disease in its earliest stages. Animal and human studies indicate that the posteromedial 

(pmEC) and anterolateral (alEC) subdivisions of the EC are involved respectively in 

navigation and object-location memory. The advent of immersive VR (iVR) technology 

provides an opportunity to determine whether tests of pmEC and alEC function has value 

in the detection of AD prior to dementia onset.  

 

Aim: 

To test the hypotheses that measures of pmEC and alEC function and structure 

differentiate i) patients with mild cognitive impairment (MCI) from age-matched healthy 

controls and ii) MCI patients at high and low risk of developing AD dementia.  

 

Methodology:  

Participants underwent testing of EC function using novel iVR paradigms of path 

integration and object-location memory. Total EC, pm-EC and al-EC volumes were 

segmented from high resolution MRI. A proportion of MCI patients underwent CSF testing 

for AD biomarkers to separate into biomarker-positive and negative groups (MCI+ and 

MCI-). The ability of the VR tests to classify pre-dementia AD (i.e. MCI+ patients) was 

compared with that of a battery of comparator cognitive tests used in current clinical and 

research practice.  

 

Results: 

Performance on the path integration task was not only impaired in MCI but importantly 

differentiated MCI+ from MCI- with greater classification accuracy than comparator 

cognitive tasks. Task performance correlated with pm-EC volume. For the object-location 

task MCI patients demonstrated larger distance errors than controls, with performance 

associated with both anterolateral EC volume and total hippocampal volume. However, 

no difference between MCI+ and MCI- was observed. 
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Conclusion 

This work demonstrates that iVR-based testing of EC function may improve diagnosis of 

early AD above and beyond current cognitive tests. The basis of such tests on single cell 

physiology and their comparability with behavioural tasks used in animal models of 

disease, confers additional advantages for translational research aimed at understanding 

the mechanisms linking pathological spread, disruption of cell physiology and 

behavioural alterations in early AD. 
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Chapter 1 Introduction 

1. Chapter Overview 

The purpose of this chapter is to provide a background on mild cognitive impairment 

(MCI), Alzheimer’s disease (AD) and spatial cognition focusing on the role of the medial 

temporal lobe, particularly the entorhinal cortex and hippocampus.  

This introduction provides an overview of:  

i) The clinical definition, pathology, neuroimaging and cognitive deficits observed in 

MCI and AD dementia 

ii) The cellular and anatomical basis of spatial cognition and its deficits in MCI and 

AD dementia.  

iii) Thesis rationale. 

iv) Aims and objectives. 

 

1.2. Alzheimer’s Disease 

AD is the leading cause of dementia accounting for an estimated 60-70% of all dementia 

cases. It is estimated than in 2017 over 50 million people were affected by dementia 

worldwide, accounting for more than 1% of global gross domestic product, and is 

forecasted to increase to 152 million by 2050 (Association, 2015). Given that the 

prevalence of AD dementia has been shown to double every 5 years after the age of 65 

(Qiu et al., 2009) and that the number of over 65 year olds is projected to reach 1.5 billion 

by 2050, the World Health Organisation has recognised AD as a public health priority 

(World Health Organization, 2015).  

 

AD is a chronic neurodegenerative condition characterised by a systematic decline in 

cognitive function, particularly in short-term memory, that invariably results in 

dementia. There is now a consensus that AD’s multifaceted pathological cascade is 

present decades before clinical presentation and significant cognitive decline. However 

the inability to identify the disease during its prodromal period before substantial and 

irreversible neuronal-loss has occurred, is the primary source of failure in developing 

disease-modifying therapies; interventions are administered too late. Correspondingly, 
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no disease-modifying therapeutics for the treatment of AD currently exists and licenced 

pharmaceuticals are only efficacious for enhancing cognition in mild dementia. 

 

1.2.1 Clinical characterisation of mild cognitive impairment and predementia AD 

The nosological entity of MCI has its origins in ‘benign senescent forgetfulness’ (KRAL, 

1962) but the concept has evolved to encompass individuals who exhibit objective 

cognitive decline more severe than would be expected by ageing alone with preserved 

functional activities (Petersen, 2004). MCI has a prevalence of between 16-20% which in 

turn confers a rate of progression to dementia of between 10-15% after two years, with 

higher rates being predicted by hippocampal volume loss, neuropsychological test 

performance, vascular and neuropsychiatric comorbidity (Petersen et al., 2018). 

However, not all MCI patients progress to dementia; approximately 20% of MCI patients 

will revert back to ‘normal’ cognition, although are at a heightened risk of subsequent 

‘relapse’, whereas approximately 50% remain stable in their MCI diagnosis (Roberts R, 

2013). MCI is common to a host of aetiologies encompassing neurodegenerative (e.g. 

fronto-temporal, Lewy-body, and vascular dementia) and neuropsychiatric conditions 

(e.g. anxiety or depression). Given this heterogeneity, MCI has been broadly 

subcategorised into amnestic and non-amnestic subtypes with the extent of cognitive 

deficits either being single or multi-domain. Amnestic MCI is more associated with AD, 

whereas non-amnestic MCI is associated with non-AD dementias, and multi-domain MCI 

Figure 1.1. Alzheimer's Disease staging (x-axis) and biomarker abnormality (y-
axis). The detection threshold for the two key indicators used to stage the disease is 
approximated for each biomarker (black dotted line). Adapted from Jack et al (2013). 
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denotes a greater extent of the disease conferring a greater risk of progression to 

dementia than single-domain MCI (Palmer et al., 2008). 
 

The disparate pathological origins of MCI combined with the overlapping cognitive 

deficits have significant implications not only for clinical management of patients, but 

also for the targeted development of interventions aimed at delaying progression from 

MCI to dementia. The differentiation of MCI due to AD (i.e. prodromal AD, Dubois et al., 

2010) from MCI of non-AD origin requires evidence of abnormal aβ and either abnormal 

tau or imaging evidence of hippocampal atrophy and/or cerebral hypometabolism 

(Petersen, 2016). Decreased cerebrospinal fluid (CSF) concentrations of aβ1-42 

combined with increased concentration of either total tau and/or phosphorylated tau are 

the most common pathological diagnostic marker of prodromal AD (Dubois et al., 2014) 

due to their high sensitivity and specificity (Olsson et al., 2016). Recently however, an 

emerging concept of preclinical AD has become apparent that broadly describes 

individuals who have evidence of AD pathology but do not yet exhibit substantial 

cognitive decline, although this field is in its infancy (Dubois et al., 2016).  

 

Preclinical AD is characterised by in vivo evidence of AD pathology using biological or 

molecular biomarkers, with changes in both CSF tau and amyloid being present more 

than 15 years prior to clinical presentation (Fagan et al., 2014). Consequently a timeline 

for biomarker sensitivity to preclinical AD has been proposed (Figure 1.1, Jack et al., 

2013; Dubois et al., 2016). Preclinical AD was originally defined as an asymptomatic stage 

of AD where no cognitive symptoms were manifest, more recently however there is 

mounting evidence that there are distinct cognitive changes in preclinical AD (Mortamais 

et al., 2017), notably in spatial cognition (Allison et al., 2016; Coughlan. et al., 2018; 

Ritchie et al., 2018) owing to its dependency on structures that degenerate early in AD 

pathology. 

 

1.2.2. AD Pathophysiology 

Macroscopic changes 

At post-mortem the AD brain exhibits gross cortical atrophy typically in the entorhinal 

cortex (EC), and hippocampus as well as parietal, frontal and cingulate cortices, whereas 
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motor, sensory and visual cortices are relatively spared. Neocortical thinning gives rise 

to widening of the cortical sulci and dilation of the lateral ventricles, particularly the 

temporal horns (Perl, 2010). Cerebrovascular disease is frequently comorbid with AD 

pathology whereby small vessel disease, demyelination of the periventricular white 

matter or micro and lacunar infarcts may be present (De La Torre, 2004). Macroscopic 

changes to anatomy are further discussed in 1.2.3 

 

Microscopic changes 

AD is a protein misfolding disease with a unique proteopathic profile involving two major 

aggregating proteins; amyloid beta (aβ) and tau (Figure 1.2). Conformational changes in 

these proteins structure enable their aggregation, accumulation and eventual spread that 

culminate in the degeneration of both neurons and glial cells. Macroscropic changes 

observed in the AD brain are the result of a synergistic toxicity between proteinopathies 

and neuroinflammation, however the primary cause and precise mechanism of AD 

remains elusive and contentious (Perl, 2010). The emergent role of neuroinflammation 

in AD’s pathological cascade is vital. However, capturing the inherent complexity of cell 

signalling pathways, mechanics of glia-mediated neurodegeneration and role of genetics 

is beyond the scope of this summary.    

 

1.2.3. Amyloid beta and the amyloid cascade hypothesis 

Extracellular deposits of aβ plaques are a pathological hallmark of the AD brain. 

Monomeric aβ is a proteolytic by-product of amyloid-precursor protein (APP) cleavage 

that is physiologically implicated in neuronal growth and repair. However, when the 

concentration of monomeric amyloid is sufficiently high it undergoes a conformational 

change that results in its oligomerisation and the formation of amyloid fibrils. 

Neuropathological studies characterise neuritic plaques into two categories: diffuse and 

dense-core, the latter is heavily implicated in AD pathology having a deleterious effect on 

synapses and neurons, whereas diffuse plaques are found in cognitively healthy elderly 

adults (Murphy and Iii, 2010). 

According to the amyloid cascade hypothesis, aβ plaques exert their neurotoxic effect 

through disrupting calcium (Ca2+) homeostasis and inducing apoptosis (Selkoe and 
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Hardy, 2016). However, the severity of amyloid plaque burden is not correlated with the 

severity of cognitive impairment or duration of dementia (Morris et al., 2014). Whereas 

more recent evidence found that non-fibrillar oligomeric aβ is capable of forming 

membrane ion channels that disrupt Ca2+ homeostasis, correspondingly inhibition of aβ 

fibrillisation has been linked to improved cognition (Nelson P. T. et al, 2013). 

Whilst the spatiotemporal progression of aβ is relatively inconsistent, there have been 

many attempts to stage its spread (Braak and Braak, 1991; Thal et al., 2002).  Whilst the 

link between amyloid burden and cognitive impairment is not reliable, experimental 

evidence illustrates a trans-synaptic progression of aβ from the EC to the hippocampus 

that induces spatial learning and memory deficits (Harris et al., 2011) that likely occur 

A 

 

B 

Figure 1.2. Spatiotemporal distribution of key pathological hallmarks. A, Blue) Aβ 
plaques develop first in the basal temporal and orbitofrontal neocortex (phase 1), 
spreading throughout the neocortex, hippocampus, amygdala, diencephalon, and basal 
ganglia (phases 2 and 3). In severe cases of AD, Aβ plaques are also found in 
mesencephalon, lower brainstem, and cerebellar cortex (phases 4 and 5). B, Green) Tau 
inclusions develop in the in the transentorhinal and entorhinal cortex, along with the 
locus coeruleus (stages I and II) subsequently spreading to the hippocampus and some 
parts of the neocortex (stages III and IV). Later stages are characterised by large 
deposits in the neocortex (stages V and VI). Adapted from Goedert (2015). 
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through synaptic dysfunction in the perforant path (Hyman et al., 1984). However tau 

deposition is more predictive of cognitive decline than aβ pathology. 

 

1.2.4. Tau  

In its physiological state tau is an intracellular soluble microtubule-associated protein, 

however in AD tau becomes misfolded, insoluble and aberrantly hyper-phosphorylated 

resulting in its self-assembly and the formation of filamentous tangles (Avila et al., 2004). 

Hyperphosphorylated tau aggregates into neurofibrilliary tangles (NFTs) eliciting 

nucleus displacement and abnormal dendritic processes that ultimately culminate in 

synaptic dysfunction and cell death (Di et al., 2016). Unlike amyloid, the spatiotemporal 

staging of tau propagation is relatively consistent between laminar and neuroanatomical 

structures (Figure 1.2). The transentorhinal and entorhinal cortices (EC) are the primary 

sites of tau pathology primarily affecting stellate neurons of layer ii (Braak and Del 

Tredici, 2015; Kaufman et al., 2018). Tau subsequently spreads to layer iii and iv (stage i 

- preclinical AD) of the EC before infiltrating the hippocampus, specifically CA1 (stage ii - 

preclinical AD) and subiculum (stage iii - approximately early MCI), thereby impairing 

the perforant path via deficits in axonal trafficking (Hyman et al., 1984; Thal et al., 2000). 

In stage iv the amygdala (MCI), thalamus and claustrum are affected ahead of the wider 

neocortex (stage v - approximately late MCI/early AD dementia) and finally the primary 

sensory, motor and visual areas (stage vi – AD dementia, Braak and Braak, 1995). Whilst 

the ‘prion-like’ spread of tau remains controversial (Mudher et al., 2017), there is 

substantial evidence indicating that the progressive spread of tau pathology occurs 

transneuronally propagating through connectivity, and not proximity (Ahmed et al., 

2014). 

 

In further contrast to amyloid, the quantity and distribution of NFTs positively correlates 

with the severity of cognitive impairment (Nelson P. T. et al, 2013), and is reflected in the 

sequential neuropsychological deficits observed in AD dementia. Given the role of the 

transentorhinal and entorhinal cortices in spatial behaviours it is anticipated that tau-

induced neurodegeneration may primarily manifest as deficits in spatial cognition. 

Importantly, layer ii (Braak stage i) of the EC contains the highest density of spatially-
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modulated grid cells anywhere in the brain (Hafting et al., 2005), and the presence and 

degree of tau pathology has been shown to elicit impairments in grid cell function that is 

predictive of impaired performance in spatial tasks (Fu et al., 2017). Subsequently, the 

spread of spatiotemporal propagation of tau pathology is associated with domain-specific 

cognitive impairments in episodic (hippocampus) and semantic memory (left anterior 

temporal lobe, supramarginal gyrus), as well as dysfunction in visuospatial 

(occipitotemporal), executive (frontoparietal) and language (left posterosuperior 

temporal lobe and supramarginal gyrus) processing (Bejanin et al., 2017). 

 

The putative link between tau propagation, cellular dysfunction and cognitive 

impairment indicates that the development of cognitive assays sensitive to tau-induced 

dysfunction may in the detection of prodromal AD. Given the increasingly understood 

link between spatial behaviours and cell physiology, it is postulated that tau-induced 

neuronal dysfunction in the EC may primarily manifest as spatial deficits.  

 

1.3. Neuroimaging in Alzheimer’s disease 

1.3.1. Structural MRI 

AD-associated atrophy occurs throughout the medial temporal lobe (MTL) coinciding 

with the spread of NFTs (Chan et al., 2001). Within the MTL numerous MRI studies report 

a specific reduction in hippocampal (Jack et al., 1997; Schuff et al., 2009; Shi et al., 2009) 

and EC (de Toledo-Morrell et al., 2000; Jessen et al., 2006; Devanand et al., 2012) volume 

in MCI and AD dementia. As such hippocampal atrophy is a common biomarker of AD 

(Albert et al., 2011; McKhann et al., 2011) with the rate of atrophy accelerated in 

individuals with Apoε4 polymorphism (Li et al., 2016), occurring up to three times faster 

in AD than in healthy ageing (Barnes et al., 2009). The commonly deployed visual rating 

scale of MTL atrophy yields between 50-75% sensitivity for predicting conversion from 

MCI to AD dementia (Dubois et al., 2007; Yuan et al., 2009) and up to 80% when combined 

with cognitive tests (Korolev et al., 2016). Hippocampal degeneration does not occur 

uniformly throughout hippocampal subfields (see de Flores et al., 2015 for review), the 

precise patterning of degeneration is confounded by differing boundary definitions, 

although international collaborations are attempting to resolve this (Wisse et al., 2017). 
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Studies of global hippocampal degeneration in early-onset AD dementia have produced 

more mixed results (Fox and Freeborough, 1997; Apostolova et al., 2011), reflecting the 

limited specificity to AD pathology and is observed in Parkinson’s disease (Camicioli et 

al., 2003), recurrent major depression (Sheline et al., 1996; Bremner et al., 2000), Lewy 

Body and vascular dementia (Barber et al., 2000).  

 

The structure of the EC exhibits significant atrophy in dementia (Juottonen et al., 1998) 

and is predictive of episodic memory impairment (Paola et al., 2007; Dickerson and Wolk, 

2013). In MCI, smaller EC volumes at baseline were predictive of disease severity and 

subsequent conversion to AD dementia (Dickerson et al., 2001) and exhibited greater 

disease specificity than hippocampal atrophy (Killiany et al., 2002; DeToledo-Morrell et 

al., 2004; Pennanen et al., 2004; Devanand et al., 2007, 2012). Critically, EC atrophy is 

predictive of memory decline, and the EC is more resistant to age-related degeneration 

than the hippocampus, which atrophies with age and is less predictive of cognitive 

decline (Raz et al., 2004). The patterning of EC atrophy appears to occur in a lateral-

medial gradient and is discussed further below and in chapter 4.   

 

1.3.2. Diffusion Tensor Imaging. 

Increasing emphasis is being placed upon pathological white matter changes in 

individuals with MCI and AD dementia, microstructural damage is revealed by examining 

the diffusion of water across a tensor. Such pathological changes in white matter are 

primarily observed in regions that are myelinated later in neurodevelopment, typically 

with smaller diameter axons and lower oligodendrocyte-to-axon ratio, such as the MTL 

(Bartzokis, 2004). This ‘retrogenesis’ is molecularly characterised by a reduction in 

myelin density (Sjöbeck et al., 2005), myelin basic protein (Wang et al., 2004) and 

oligodendrocytes (Sjöbeck et al., 2006). Increases in mean diffusivity has been observed 

in the frontal, parietal and medial temporal lobes, including regions of interest such as 

the hippocampus and EC, of patients with MCI and AD dementia (Fellgiebel et al., 2004; 

Rose et al., 2006; Stahl et al., 2007). Furthermore, decreased fractional anisotropy, a 

measure of diffusion directionality and isotropy indicative of white matter damage, is 
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reported in the MTL of MCI patients (Fellgiebel et al., 2004; Rose et al., 2006; Zhou et al., 

2008; Choo et al., 2010; Salat et al., 2010).  

 

1.3.3. Resting-state functional MRI 

Functional MRI (fMRI) measures brain activity by detecting blood oxygen level 

dependent (BOLD) changes as a surrogate of neuronal activity either at rest or in 

response to a specific task, but its currently not accepted as a clinical biomarker for the 

detection of AD (Sperling, 2011). However the increasing concordance of findings 

indicating aberrant functional connectivity associated with prodromal AD may result in 

rs-fMRI being included as biomarker for prodromal AD (Badhwar et al., 2017; de Vos et 

al., 2018).  

 

AD-induced deficits in resting-state functional connectivity have been observed in 

hippocampal synchrony as well as the default-mode network. Such deficits differentiate 

AD dementia patients from healthy controls with high sensitivity and specificity (72–

85%) (Li et al., 2002; Greicius et al., 2004; Supekar et al., 2008).  These deficits in inter- 

and intra- network functional connectivity are additionally observed in MCI (Wang et al., 

2015), and are predictive of conversion to AD dementia at 24-month follow up (Li et al., 

2016). Critically, MCI is associated with disrupted connectivity in the dorsal ‘what’ 

pathway (Goodale and Milner, 1992), with disconnection observed between 

parahippocampal gyrus and hippocampus (Chen et al., 2016) that  corresponds to aβ 

deposition in the perirhinal cortex (including the transentorhinal cortex), as such may be 

a sensitive biomarker for the detection of preclinical AD (Song et al., 2015).  

 

Whilst the targeted evaluation of functional and effective connectivity using resting state 

fMRI measures may offer high specificity for incipient AD, these methods are currently 

limited by differences in pre-processing pipelines (Cusack et al., 2015) and may require 

prospective motion-correction to be more reliable (Vemuri et al., 2012; Huang et al., 

2018).   
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1.3.4. Ligand-positron emission tomography 

Positron emission tomography (PET) ligands binding filamentous tau recapitulates the 

broad topographical distribution of histopathological tau in vivo and correlates with 

cognitive decline (Small et al., 2006; Schwarz et al., 2016). The localisation of 

neurofibrillary (Okamura et al., 2014) and paired helical filamentous tau (Chien et al., 

2014; Shcherbinin et al., 2016) correlates with the clinical  and neuroanatomic variability 

of AD (Ossenkoppele et al., 2016). The binding of aβ ligands spatially overlaps with 

patterns of hypometabolism as well as histopathological distribution observed in AD. 

Whilst approximately 50% of MCI patients have heightened binding retention compared 

to controls (Pike et al., 2007; Okello et al., 2009; Wolk et al., 2009; Vandenberghe et al., 

2010), the diagnostic specificity of aβ PET is no more effective than CSF biomarkers in 

differentiating between AD staging (Morris et al., 2016). However the associated cost, 

logistical considerations, invasiveness and the short half-life of PET ligands limits their 

clinical viability (Bateman, 2012). 

 

1.4 Cognitive impairment in Alzheimer’s disease 

Given that AD is defined clinically by its cognitive symptoms, and the low cost of cognitive 

testing, there is considerable value in developing cognitive tests that are sensitive and 

specific to prodromal AD. The ability of global and domain-specific cognitive tests to 

detect and differentiate AD from other neurodegenerative pathologies is discussed, as 

well as their limitations in aiding the detection of prodromal and preclinical AD.  

 

1.4.1 Global cognitive tests 

Brief tests of global cognition are used to capture a snapshot of deficits in specific 

cognitive domains to inform diagnosis of dementia or MCI. These tests are brief, efficient 

and have high sensitivity and specificity for the detection of dementia (Mitchell, 2009; 

Velayudhan et al., 2014). However these tests are not anatomically specific or sensitive 

to the underlying pathology (Hutchinson and Mathias, 2007; Mathias and Burke, 2009) 

limiting their accuracy in classifying MCI (Carvalho et al., 2013; KF et al., 2015) and 

preclinical AD (Mortamais et al., 2017; Papp et al., 2017). 
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1.4.2 Episodic memory  

Functional anatomy of episodic memory 

Ever since the profound anterograde amnesia observed in patient H.M following 

temporal lobectomy (Scoville and Milner, 1957) there has been consensus that the 

hippocampus is critical for declarative short-term memory, particularly  CA1 ((Rempel-

Clower et al., 1996; Cipolotti et al., 2006). The profound episodic memory deficits 

observed in MCI and AD dementia have been thoroughly reviewed elsewhere (Small et 

al., 2001; Gold and Budson, 2008; Gallagher and Koh, 2011; Tromp et al., 2015). 

Theoretical models of hippocampal function implicate the hippocampus as an integration 

site binding items and contexts (BIC model), or objects and scenes via connectivity with 

lateral and medial EC networks, respectively (Ranganath, 2010). The “PMAT” model 

extends the BIC model to extra-MTL networks that converge on the EC prior to the 

hippocampus. The posteromedial (PM) network (including thalamus, retrosplenial and 

posterior parietal cortices) converges on the medial EC encoding spatial and temporal 

representations. Whereas anterior-temporal (AT) networks include the orbitofrontal, 

amygdala, and perirhinal cortices that converge on the lateral EC and is thought to encode 

semantic and perceptual information (Ranganath and Ritchey, 2012). Given the central 

role of the EC in these models concomitant with the spatiotemporal deposition of tau 

pathology in early AD it is anticipated that deficits in scene and object processing may be 

detectable ahead of holistic episodic memory impairment.  

 

1.4.3. Other memory domains 

Autobiographical memory is impaired in both MCI and AD dementia (Leyhe et al., 2009; 

Irish et al., 2011) and is associated with hippocampal atrophy (Philippi et al., 2012) 

reflecting the hippocampus’ role in the integration of contextual information. This may 

culminate in compromised representations of self and/or increase the frequency of de-

contextualised memories commonly expressed as “déjà vu”. AD is also associated with 

deficits in semantic memory (Hodges and Patterson, 1995; Joubert et al., 2008). However, 

semantic memory deficits are not specific to AD and is far more sensitive to semantic 

dementia localised to a left-lateralised temporal lobe network (Lambon Ralph and 

Patterson, 2008; Binder et al., 2009).  Implicit memory is preserved in MCI and AD 

dementia as evidenced by priming tasks requiring perceptual, but not conceptual, 
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processing (Meiran and Jelicic, 1995),  although maybe be confounded in severe AD by 

concomitant apraxia and agnosia that approximately coincides with neocortical and 

cerebellar spread of AD pathology (Machado et al., 2009). 

 

1.4.4 Neuropsychiatric symptoms 

The prevalence of neuropsychiatric symptoms in patients with cognitive impairment and 

AD is greater than in the general population, and the presence of depression or apathy is 

associated with an increased risk of conversion to dementia in MCI patients (Taragano et 

al., 2009). As the disease progresses agitation, sleep disorders, delusions and 

hallucinations are also more frequently reported (Lyketsos et al., 2011). 

 

1.5 Limitations of traditional neuropsychological test paradigms 

Both global and domain-specific neuropsychological tests have demonstrated varying 

degrees of efficacy in aiding the detection of MCI and AD dementia, with some exhibiting 

greater sensitivity and specificity to prodromal AD (e.g. episodic memory) than others 

(e.g. semantic memory). However, given the importance of identifying AD in its infancy 

(see Petersen (2018) for a summary), a paradigm shift away from ‘typical’ pen-and-paper 

neuropsychological tasks is important for 4 reasons: 

 

1) Target sites of early pathology. Given the importance of identifying the disease in its 

infancy, ideally before hippocampal infiltration, neuropsychological tests that target 

brain areas compromised in the earliest stages of AD is required. A substantial proportion 

of current ‘traditional’ neuropsychological tasks are not predicated on brain-behaviour 

relationships. 

 

2) Translation. All tests created to probe the aforementioned neuropsychological 

domains are not translatable to animal models, for example the inability to generate a 

rodent equivalent of verbal memory tests used widely in clinical studies. Given the wide 

use of spatial memory tasks such as the Morris water maze in preclinical AD trials, it 

makes heuristic sense to develop comparable outcome measures that enable across 

species comparison. Such links would simultaneously benefit both diagnosis and the 
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development of translatable outcome measures for use in both preclinical and human 

anti-AD trials. 

 

3) Cellular basis of behaviour. Given AD pathology’s influence on the function and 

physiology of neurons, neuropsychological tests should seek to target behaviours and 

cognitive processes that are increasingly understood at the level of cell physiology. It is 

currently unclear how episodic memory, processing speed or executive function are 

represented at the cellular level. Such an approach would permit the translation of causal 

manipulations at the level of single cell physiology to animal, and subsequently human, 

behaviours that may aid in the detection of preclinical AD.  

 

4) Ecological validity; pen-and-paper tasks have limited ecological validity and are rarely 

representative of impaired daily functioning e.g. Rey figure recall or trail-making test. 

There is an increasing demand for direct behavioural observations that are more 

ecologically valid (e.g. Pflueger et al., 2018; Serino and Repetto, 2018).  

 

1.6. Spatial Cognition 

Evolutionarily spatial navigation and spatial memory are critical for survival. MTL 

regions are heavily involved in supporting these phylogenetically conserved behaviours, 

with spatially modulated cells in the hippocampus and EC implicated in the formation 

and updating of a ‘cognitive map’ of an environment. Critically, the anatomical 

localisation of these spatially modulated cells overlaps considerably with brain regions 

that exhibit dysfunction and degeneration in early AD. 

 

1.6.1. Neural correlates of spatial cognition 

Nearly half a century ago, O’Keefe and Dostrovsky (1971) discovered that neurons in the 

rat hippocampus had spatially receptive fields, with the depolarisation of these cells  

corresponding to an animal’s location within its environment and were correspondingly 

named ‘place’ cells (Figure 1.3A). The spatial selectivity of hippocampal neurons meant 

that position within an environment could be inferred from a small sample of neurons. 

Seven years later O’Keefe and Nadel  (1978) published their seminal work positing that 

hippocampal place cells are the neural instantiation of the cognitive map that underpins 
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allocentric landmark navigation. However, navigation requires a neural representation 

of heading direction and space that is independent of environmental landmarks. 

Correspondingly, the Mosers (2004) began to look upstream of the hippocampus to the 

EC and discovered grid cells in the medial EC (mEC). Unlike place cells, mEC grid cells 

exhibit multiple firing fields forming a hexagonal grid (Figure 1.3B) that spans the entire 

environment and are independent of environmental landmarks, travel speed or direction. 

By some estimates up to 95% of the cells in the mEC are grid cells (Diehl et al., 2017) and 

they are thought to encode a neural representation of Euclidean space as well as being 

integral to the dynamic computation of current position (Hafting et al., 2005). Head-

direction cells found in the presubiculum, thalamus and EC are tuned to a specific cardinal 

direction reliant upon idiothetic cues and an allocentric representation of space (Figure 

1.3C, Taube et al., 1990). In the deeper layers of the EC conjunctive head direction x grid 

cells (cells firing in a grid like pattern tuned to a specific direction) are thought to be 

critical for navigation by path integration, i.e. the ability to keep track of, and return to, a 

previously visited location using only idiothetic cues (McNaughton et al., 2006). Object 

cells in the lateral EC (lEC) are thought to encode a representation of objects, or the 

‘content’ of a specific environment, their activity is localised around the position of a 

given object (Figure 1.3D, top), whereas object-trace cells fire at the location of the object 

when the object has been removed (Figure 1.3D, bottom, Tsao et al (2013)). Homologous 

trace cells have recently been demonstrated in the human EC with remapping highly 

related to  memory demands during an object-location task (Qasim et al., 2018).  Recently, 

object-vector cells have been reported in the mEC whose activity corresponds to a 

specific distance and direction from a given object and is consistent despite the object’s 

translocation (Figure 1.3E). These cells are postulated to provide a positional map that is 

relative to local landmarks that can be used for landmark navigation (Høydal et al., 2018). 

Object-responsive and place-responsive neurons indicate a pivotal role of the lEC in the 

formation of associations between objects and contexts upstream of the hippocampus 

(Deshmukh and Knierim, 2011). A plethora of other spatially modulated cells are also 

emerging throughout the MTL including boundary cells (Lever et al., 2009), speed cells 

(Kropff et al., 2015) and time cells (Mankin et al., 2012), however these are beyond the 

scope of this thesis. 
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Spatially-modulated place (Ekstrom et al., 2003; Miller et al., 2013), trace  and grid 

(Jacobs et al., 2013; Nadasdy et al., 2017) cells have also been directly observed in 

humans using intracranial EEG. Grid cell-like 6 fold symmetric activity has also been 

indirectly observed in the EC using fMRI (Doeller et al., 2010), this approach revealed 

increased grid cell-like representations during virtual and imagined navigation (Horner 

et al., 2016) and is predictive of performance in spatial tasks (Kunz et al., 2015; Stangl et 

al., 2018a). Intracranial EEG experiments have enabled the examination of oscillatory 

activity in humans during navigation, with theta activity in the MTL during navigational 

mazes associated with movement (Ekstrom et al., 2005), anticipation of movement  (Bush 

et al., 2017) and speed of movement (Aghajan et al., 2017) in desktop tasks. Critically 

intracranial EEG of the hippocampus revealed heightened low-frequency theta 

oscillations during a navigation task with real world movement that were not present in 

when stationary or in a desktop (i.e. stationary) navigation task. This study highlights the 

importance of motor, vestibular and proprioceptive input generated through ambulation 

during navigational tasks (Bohbot et al., 2017).  

 

Whilst the distribution and organisation of lEC cells are thought to have a more tenuous 

homology to the anterolateral EC (alEC) in humans, mEC cells are highly conserved in the 

human posteromedial EC (pmEC, Naumann et al., 2016). However both the alEC and 

pmEC exhibit conserved reciprocal connectivity with other brain areas implicated in 

spatial behaviours (Naumann et al., 2018). The discrete specialisation of the EC suggests 

a homology in the neural architecture than underpins the functional mediation of spatial 

behaviours. A plethora of research consistently demonstrates the specialisation of the 

lEC/mEC in rodents (Hunsaker et al., 2013; Van Cauter et al., 2013; Wilson et al., 2013b, 

a; Diehl et al., 2017; Kuruvilla and Ainge, 2017a; Rodo et al., 2017, see Knierim et al. 

(2014) for review) and alEC/pmEC in humans for processing object and spatial 

information, respectively (Schultz et al., 2012, 2015; Reagh and Yassa, 2014; Maass et al., 

2015, 2018a; Navarro Schröder et al., 2015; Reagh et al., 2018, 2016, 2017; Berron et al., 

2017a, 2018a; Yeung et al., 2017, 2018, 2019b; Berron et al., 2018b; Olsen et al., 2017). 

The distinct roles of the pmEC and alEC in path integration and object-orientated spatial 

processing are developed further in chapters 2 and 3, respectively.  
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Walked path 

Cell firing 

A) Place cells B) Grid cells C) Head-direction cells 

 

D) Object cells 
 

E) Object-vector cells 

Figure 1.3. Illustration of spatially 
modulated cells in the medial temporal lobe. 
Top row illustrates disparate neuronal activity 
during free exploration of an environment. 
Bottom row are cartoon rate maps, with firing 
rate indicated by ‘hot’ colours A) Hippocampal 
 place cells fire in response to a specific location within an environment, these cells are 

qualitatively anchored to the presence of allothetic cues.  B) Medial entorhinal grid cells’ are 
thought to encode a distance metric of an environment, exhibiting stereotypic activity that is 
independent of local cues within an environment. C) Head-direction cells are predominantly 
found in the subiculum, thalamic nuclei, retrosplenial and entorhinal cortices. Cell activity is 
coupled to heading direction in the horizontal (yaw) plane and is independent of environment, 
this illustration depicts a cell whose activity is selective for north-east. Conjunctive head-
direction x grid cells also exists, predominantly in the medial entorhinal cortex and are thought 
to functionally underpin path integration. D) Lateral entorhinal object cell activity (top) occurs 
around the location of an object in the environment, whereas object-trace cell activity persists 
when the object is removed (bottom). E) Object-vector cells in the medial entorhinal cortex fire 
at a specific distance and direction from discrete objects, regardless of position.  
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1.6.2. Spatial cognition in Alzheimer’s disease 

There is a dearth of literature examining the relationship between AD pathology and 

spatially-modulated cells, and as such the precise effect of AD pathology on spatial 

behaviour/cognition remains elusive. However, two key studies have been conducted 

that raise the possibility of a causal relationship between AD pathology and 

electrophysiological dysfunction that culminate in impaired spatial behaviours. Cacucci 

et al (2008) examined the relationship between hippocampal place cells and spatial 

cognition in transgenic AD mice that have elevated levels of aβ pathology. The 

degeneration of place cells was observed in the aged (16 months) but not younger (3 

month) transgenic mice, and was associated with place cell dysfunction and reduced 

encoding of spatial information. Critically, the degeneration of place cells and the degree 

of plaque burden was strongly associated with impaired performance on T-maze tasks of 

spatial memory. Fu et al., 2017 demonstrated similar results in mEC grid cells of aged 

transgenic mice (30 months) that expressed a highly aggregable form of human tau. The 

degree of tau pathology in EC-tau mice(Harris et al., 2012) was associated with reduced 

firing and periodicity of grid cells that culminated in spatial memory deficits in the Morris 

water maze and in T-mazes. These deficits were accompanied by a 70% reduction in mEC 

layer ii glutamatergic neurons and a 50% increase in inhibitory neuron firing. This 

neuronal disequilibrium strengthened theta oscillations that may partially explain the 

increase in oscillatory changes observed in MCI and AD dementia (Montez et al., 2009; 

Moretti et al., 2009). 

The synaptic and neuronal dysfunction and degeneration induced by the presence of AD 

pathology is posited to underpin spatial deficits observed in AD dementia, and to date 

literature has predominantly focused on egocentric and allocentric spatial tasks. Briefly, 

egocentric navigation is a strategy that refers to self-centred navigation, often when 

following familiar routes, whereas allocentric navigation is dependent upon the 

perception of landmark positions relative to other landmarks, most frequently deployed 

in novel environments (Coughlan. et al., 2018). Impairments in egocentric and allocentric 

memory have been observed in individuals with MCI (Hort et al., 2007a; Weniger et al., 

2011) and AD dementia ((Tu et al., 2015), see Serino et al (2014) for review). 

Furthermore, deficits in the translation of allocentric to egocentric representations are 

observed (Serino and Riva, 2013). Allocentric spatial processing depends on the MTL, and 
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specifically the hippocampus (Morris, 1984; Astur et al., 2002; Feigenbaum and Morris, 

2004; Bartsch et al., 2010; Goodrich-Hunsaker et al., 2010; Banta Lavenex et al., 2014). 

Performance on the Four Mountains task (4MT), a hippocampal-dependent test of 

allocentric spatial memory (Hartley, 2007; Hartley and Harlow, 2012), is impaired in AD 

dementia (Pengas et al., 2010) and differentiates AD from frontotemporal dementia 

(FTD) (Bird et al., 2010). The 4MT performance also differentiates MCI patients with and 

without underlying AD (Moodley et al., 2015) and is highly predictive of progression from 

MCI to AD dementia at two year follow up (Wood et al., 2016). Whilst performance on 

different allocentric spatial memory tasks were impaired in MCI, performance was not 

predictive of subsequent conversion to AD dementia (Weniger et al., 2011). More 

recently, allocentric (4MT), but not egocentric, deficits have been observed in healthy 

older adults at higher risk of AD dementia, with performance errors being associated with 

dementia risk (Ritchie et al., 2018).  

A growing body of evidence suggests that spatial tests may be both sensitive and specific 

to AD during preclinical stages. Allison et al., (2016) demonstrated that asymptomatic 

individuals with preclinical AD, with biomarker positivity defined as CSF Aβ42 > 

500pg/ml (Fagan et al., 2006), were accurately differentiated from their biomarker 

negative counterparts based upon performance on a way-finding (allocentric) navigation 

task (area under the curve (AUC) = 0.77). By comparison tests of episodic memory and 

egocentric route-learning differentiated preclinical AD from biomarker negative 

participants at approximately chance-level accuracy (AUC=0.56). These findings indicate 

that performance in allocentric navigation tasks may yield greater sensitivity and 

specificity to incipient AD ahead of episodic memory or egocentric navigation 

impairments. Lastly, young adult APOE-e4 carriers, representing the strongest genetic 

risk factor of late-onset AD, exhibit reduced EC activation and grid-cell like 

representations during an fMRI object-location task (Kunz et al., 2015). Reduced grid-cell 

like representations in at-risk participants were associated with spatial memory 

performance, explained as potential evidence of tau pathology in the EC. Reduced grid-

cell like representations were also associated with elevated hippocampal activity and 

interpreted as evidence of a corresponding compensatory mechanism in response to EC 

dysfunction. 
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Recent research from multiple groups suggest that impairments in alEC-dependent 

object discrimination (Schultz et al., 2012; Reagh and Yassa, 2014; Navarro Schröder et 

al., 2015; Olsen et al., 2017) is impaired in older adults (Reagh et al., 2016, 2017; Berron 

et al., 2018b) and is associated with the degree of cognitive decline (Fidalgo et al., 2016). 

Recently, object discrimination performance has been demonstrated to be associated 

Tau pathology, stage 

Hypometabolism 

Amyloid pathology, stage 

 

Grid cell 
Place cell 

Head-direction 

Object/Object-trace 

Figure 1.4. Schematic summary of the spatial network, its function and overlap with 
the spatiotemporal propagation of AD pathology. Brain regions implicated in 
mediating specific spatial cognitive functions (italics). Arrows indicate connectivity 
between brain structures or the mediation of specific spatial behaviours evaluated in this 
thesis. Lightning bolts indicate the presence of evidence for these brain areas compromise 
in AD pathology and the associated staging, where applicable. The highlighted cognitive 
functions are investigated and discussed at length in chapters 2 (blue) and 3 (orange).  
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with CSF tau and aβ levels and tau deposition in the medial temporal lobe of older adults 

(Berron et al., 2018a, in preparation; Maass et al., 2018a in press). The role of the alEC 

and pmEC in mnemonic discrimination is discussed further in chapters 2 and 3. 

1.7. Summary of study rationale  

To date, all interventional trials aimed at slowing the progression of Alzheimer’s disease 

(AD) have failed. Two of the main contributors to this failure are: i) problems in 

identifying the initial stages of AD, such that interventional trials are applied too late in 

the disease process, and ii) the lack of translatable outcome measures for comparing 

treatment effect across preclinical testing in animal models of disease and clinical trials 

in patient populations. Given that the entorhinal cortex (EC) is one of the primary sites of 

AD neuropathology, detection of AD-related EC dysfunction function provides a potential 

solution to both of these problems.  

The EC is a unique brain structure whose cellular physiology and anatomy is tightly 

coupled to phylogenetically conserved spatial behaviours, the EC is broadly subdivided 

along its medial-lateral axis, the alEC (lEC in rodents) is implicated in object-orientated 

spatial processing whereas the pmEC (mEC in rodents) is required for navigation via path 

integration and scene processing, both spatial functions are underpinned by specific 

neuronal physiology. As such, the targeted development of EC-derived spatial cognitive 

paradigms may be sensitive to the presence of AD pathology in its predementia and 

preclinical phases. The degree of impairments in tasks designed around the function of 

the EC have not been examined in MCI or prodromal AD, doing so would overcome 

current cognitive task’s limited ecological and translational validity. 

Therefore, the aim of this thesis is to test the hypothesis that performance in spatial-

cognitive tasks based around the disparate function of EC subdivisions are impaired in 

MCI. It is predicted that MCI patients with CSF positive AD biomarkers (MCI+ i.e. 

prodromal AD) will be more impaired than MCI patients with negative AD biomarkers 

(MCI-). It is also predicted that i) performance on both tasks will differentiate MCI from 

HCs and MCI+ from MCI- more effectively than “gold standard” diagnostic cognitive tasks 

currently used in clinical and research practice and ii)  that performance on  tasks probing 

the functions of the two EC subdivisions correlates with subdivision volume as measured 

from high resolution MRI.  
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Chapter 2 Path integration  

 

We must bear in mind that neither a compass, nor the north star, nor any other such sign, 

suffices to guide a man to a particular spot through an intricate country, or through 

hummocky ice, when many deviations from a straight course are inevitable, unless the 

deviations are allowed for, or a sort of "dead reckoning" is kept… The manner in which the 

sense of direction is sometimes suddenly disarranged in very old and feeble persons, and the 

feeling of strong distress which, as I know, has been experienced by persons when they have 

suddenly found out that they have been proceeding in a wholly unexpected and wrong 

direction, leads to the suspicion that some part of the brain is specialised for the function of 

direction. – Charles Darwin (1873), the first report of path integration in homosapiens  
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2.1. Introduction 

Path integration (PI), the ability to keep track of your current position in reference to 

another location and integrate a direct return path using only idiothetic self-motion cues 

such as optic-flow, vestibular and proprioceptive information (Etienne and Jeffery, 2004; 

McNaughton et al., 2006), depends on the entorhinal cortex (EC). Unlike landmark 

navigation (Doeller et al., 2008), PI is not contingent upon the presence of orientation 

cues, although performance is improved by their presence (Kalová et al., 2005; Philbeck 

and O’Leary, 2005). While several other brain regions have been implicated in PI, 

including the hippocampus, prefrontal and retrosplenial cortices (Chrastil et al., 2015, 

2017), there is mounting evidence that the EC is critical for PI and is implicated in route 

planning (Maguire et al, 1998; Jacobs et al, 2010), the computation of goal direction 

(Chadwick et al., 2015) and goal distance (Spiers and Maguire, 2007; Howard et al., 2014).  

 

In vivo single cell studies have shown that the firing of EC grid cells and head direction 

cells is coupled to PI (McNaughton et al, 2006). The medial EC (mEC) is considered to be 

particularly involved in PI, given that up to 95% of mEC neurons may be grid cells (Diehl 

et al, 2017). Evidence that the EC underpins navigation in other mammalian species is 

supported by the demonstration of EC grid cell’s in bats (Yartsev et al, 2011), monkeys 

(Killian et al, 2012) and humans (Jacobs et al, 2013). The mEC and theoretically the pmEC 

homolog in humans, mediates PI through grid cells continuous integration of current 

position and velocity within a distance metric (Hafting et al., 2008), while head-direction 

cells support the computation of current heading and goal direction (McNaughton et al., 

2006; Sargolini et al., 2006).  

 

PI deficits are observed in response to mEC lesions (Van Cauter et al., 2013) and ablation 

of mEC glutamate receptors that disrupt grid cells but not other spatially modulated cells 

(Gil et al., 2018). In a VR PI task the inactivation of mEC stellate cells severely disrupted 

PI-based distance estimates that required multisensory integration (Tennant et al., 

2018). Recent research using deep neural networks demonstrated that grid-like 

representations emerge in artificial agents trained to perform PI in novel, complex and 

changing environments (Banino et al., 2018). Importantly PI was impaired in agents 

unable to develop such representations further indicating a central role of grid cells in 

adaptive PI, however the utility of deep learning in spatial cognition is yet to be 
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established, although is a rapidly growing field (Cueva and Wei, 2018; Labash et al., 

2018). Finally, Stangl et al (2018) demonstrated a negative association between grid-cell-

like representations during an fMRI object-location task and path integration errors in a 

separate task requiring real-world movement. The degree of grid cell-like 

representations predicted impairments in old, but not younger adults. Interestingly, 

impaired grid cell temporal stability and reduced grid cell-like representations are  

observed in healthy adults at risk of AD (Kunz et al., 2015). 

 

In the only study of PI in MCI and AD dementia to date, Mokrisova et al (2016) 

demonstrated that patients with MCI and AD dementia exhibit PI deficits compared to 

HCs, however a step down in PI accuracy between MCI and AD dementia was not 

observed. Interestingly, performance correlated with EC and parietal thickness as well as 

hippocampal volume. However, this study is not without limitations; local allothetic 

landmarks were present at all times during the experiment, enabling participants to 

navigate and self-localise using either this local landmark or the enclosing boundary 

thereby impeding the use of true PI strategies. The inclusion of such landmarks is 

particularly problematic for patients with dementia who demonstrate a reliance on such 

cues, even when these are explicitly manipulated to be inaccurate (Kalová et al, 2005). 

The use of immersive virtual reality (iVR) for the study of path integration overcomes 

these limitations by enabling environmental cues to be set infinitely far away without 

compromising on real-world movement. This is vital given that PI is dependent on the 

function of grid cells which in turn are dependent on the integration of idiothetic self-

motion cues that are impaired in the absence of real-world movement (Winter et al, 

2015). Correspondingly, larger rotational (Klatzky et al, 1998) and distance errors 

(Distler et al, 1998; Sinai et al, 1999; Adamo et al, 2012) have been reported in desktop 

VR navigation tasks when compared with tasks requiring active movement, possibly 

reflecting the absence of self-motion cues, leading in turn to reduced grid cell activation 

(Ólafsdóttir and Barry, 2015). The requirement for actual movement in iVR also 

approximates real world navigation and thus has greater ecological validity than desktop 

VR. There is also evidence of differing neural processes underlying desktop and actual 

navigation, with desktop VR being associated with lower frequency hippocampal theta 

oscillations (Bohbot et al, 2017). 
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These previous studies provide the backdrop for the present study, which investigates 

EC-dependent PI in MCI patients at risk of developing dementia. Given the robust 

evidence that PI is dependent on EC function and its early compromise in AD, there is a 

requirement to investigate PI deficits in MCI and predementia AD using an environment 

where local landmarks are not present and the environment can be manipulated. 

 

Hypothesis: Performance on an iVR PI task of EC function differentiates MCI patients at 

increased risk of developing dementia.  

 

Secondary hypotheses:  

i) PI is impaired in older versus but not younger healthy controls. 

ii) Manipulation of environmental cues perturbs PI accuracy. 

iii) PI performance is a better classifier of MCI and prodromal AD than comparator 

cognitive tests considered to have high diagnostic sensitivity and specificity. 

 

2.2. Methodology 

2.2.1. Participants 

The studies presented in this thesis predominantly focus on patients with mild cognitive 

impairment (MCI) and aged-matched healthy controls (HC), described below. This 

chapter as well as chapter 3 additionally examine the effect of ageing on task performance 

by comparing younger controls (YCs) to HCs. The examination of structural atrophy in 

AD dementia patients is additionally examined in chapter 4. The definition of these 

groups, method of recruitment, inclusion and exclusion criteria are described here, 

excluding AD dementia patients that are described in chapter 4.  

 

MCI patients were recruited from the Cambridge University Hospitals NHS Trust Mild 

Cognitive Impairment and Memory Clinics. MCI was diagnosed by neurologists according 

to the Petersen criteria (Petersen, 2004), diagnosis of which requires; i) subjective 

cognitive complaint, ii) objective evidence of cognitive impairment, iii) preserved 
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activities of daily living, iv) functional independence and v) absence of dementia. 

Objective cognitive decline was evaluated using the Addenbrooke’s Cognitive 

Examination – Revised (ACE-R, Mioshi et al, 2006) and a score of 0.5 on the Clinical 

Dementia Rating scale (CDR) (Morris, 1997). All patients underwent screening blood 

tests to exclude reversible causes of cognitive impairment. Exclusion criteria included the 

presence of a major medical or psychiatric disorder, epilepsy, a Hachinski Ischaemic 

Score > 4/15 (Moroney et al, 1997), a history of alcohol excess or any visual or mobility 

impairment of such severity as to compromise ability to undertake the iVR test.  

 

Twenty-six MCI (n=45) patients underwent CSF biomarker and were stratified into 

biomarker-positive (MCI+, n=12) and biomarker-negative (MCI-, n=14) groups (Table 

2.1). The remaining 19 MCI patients did not undergo CSF studies as part of their clinical 

workup. Aged matched healthy control participants without a history of cognitive 

impairment (HCs, n=41, Table 2.1), along with thirty-one young control participants (YCs, 

aged 18-30, mean age = 21.34, 80% female) were also tested. 

 

A proportion of MCI patients underwent CSF biomarker studies (β-amyloid1–42, total 

tau, phosphorylated tau) as part of their clinical diagnostic workup. Biomarker studies 

were undertaken using ELISA assay kits (Innotest, Innogenetics, Ghent, Belgium) as 

outlined elsewhere (Shaw et al, 2009). Thresholds for negativity or positivity were set as 

CSF amyloid > 550pg/ml, CSF tau < 375pg/ml with a CSF tau: amyloid ratio of <0.8 

(Mulder et al, 2010). MCI patients were stratified into biomarker-positive (MCI+) and 

biomarker-negative (MCI-) groups accordingly. Researchers undertaking the VR tests 

were blinded to the CSF status of patients. The remaining 19 MCI patients did not undergo 

CSF studies as part of their clinical workup. Healthy control participants without a history 

of cognitive impairment (HCs) were recruited from Join Dementia Research, an online 

repository of patients and volunteers interested in participating in dementia research.  

 

The exclusion criteria included:  

 

• Presence of significant cerebrovascular disease 
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• Major medical co-morbidities e.g. Congestive Cardiac Failure, Diabetes 

Mellitus with renal impairment 

• Major psychiatric disorder 

• The use of cognitive enhancing drugs e.g. Cholinesterase inhibitors  

• A concurrent diagnosis of Epilepsy 

• A history of alcohol excess or illicit drug use 

• A history of severe visual impairment, e.g. macular degeneration, diabetic 

retinopathy, as determined by the clinical team 

• A history of repeated head trauma. 

 

Twenty-six MCI (n=45) patients underwent CSF biomarker and were stratified into 

biomarker-positive (MCI+, n=12) and biomarker-negative (MCI-, n=14) groups (Table 

2.1). The remaining 19 MCI patients did not undergo CSF studies as part of their clinical 

workup. Aged matched healthy control participants without a history of cognitive 

impairment (HCs, n=41, Table 2.1), along with thirty-one young control participants (YCs, 

aged 18-30, mean age = 21.34, 80% female) were also tested. 

 

The study was undertaken in line with the regulations outlined in the Declaration of 

Helsinki (WMA, 2013) and was approved by the NHS Cambridge South Research Ethics 

Committee (REC reference: 16/EE/0215). 

 

2.2.2. Comparator neuropsychological tests   

To compare the ability of the iVR test to classify prodromal AD with that of reference 

neuropsychological tests considered to be highly sensitive to early AD, all participants 

were administered a battery of tests chosen for their effectiveness in predicting 

conversion from MCI to dementia (A-C), inclusion in the Preclinical Alzheimer’s Cognitive 

Composite approved by the FDA for use as cognitive outcome measures in trials aimed at 

preclinical AD (A, D), or prior work indicating high sensitivity and specificity for 

prodromal AD (E). These tests are as follows (cognitive domains assessed in 

parentheses): 

A. Free and Cued Selective Reminding Test (FCSRT, episodic memory – 

verbal, Buschke, 1984) 
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B. Rey figure recall (RFR, episodic memory – nonverbal, Osterrieth, 1944) 

C. Trail Making Test B (TMT-B; executive function, attention, processing 

speed, Bowie and Harvey, 2006) 

D. Digit Symbol test (DST, attention, processing speed, Ryan and Lopez, 2001) 

E. 4 Mountains Test (4MT, allocentric spatial memory, Hartley et al, 2005) 

 

All participants also underwent global cognitive testing with the Addenbrookes Cognitive 

Examination-Revised (ACE-R, Mioshi et al, 2006) and the National Adult Reading Test 

(NART, Nelson, 1982), as a measure of premorbid IQ. 

 

2.2.3. Immersive virtual reality  

Immersive virtual reality tasks were administered using the HTC Vive iVR kit, which uses 

external base stations to map out a 3.5x3.5m space within which participants walked 

during the VR task. If participants went beyond the tracked boundary by 30cm, an ‘out of 

border’ warning appeared in their sightline to encourage them to not walk any further. 

Researchers were also in the immediate proximity to ensure that participants did not 

venture beyond the test space. Both the PIT and OLT was programmed by Andrea 

Castegnaro (UCL) in the Unity game engine and ran on Steam VR software, running on an 

MSI VR One backpack laptop. 

 

Participation in the VR tasks and cognitive testing were conducted at either the MRC 

Cognitive Brain Sciences Unit or Cambridge Institute of Public Health, University of 

Cambridge. 

 

2.2.4. The path integration task  

The PI task was undertaken within virtual open arena environments with boundary cues 

projected to infinity (Figure 2.1C). Three environments were used, each with unique 

surface details, boundary cues and lighting. The absence of local landmarks ensured EC-

grid cell dependent strategies rather than striatal-mediated landmark-based navigation 

(Doeller et al, 2008).  
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Pre-trial practice sessions consist of 20 seconds of habituation to the iVR environment, 

during which participants were encouraged to explore the environment. Following 

habituation, participants performed five practice trials, where cone one was re-presented 

at the end of each trial in order to provide direct visual feedback to participants on the 

distance error between the remembered and actual locations of cone one. The task 

consisted of nine trials conducted within each of the three environments, totalling 27 

trials per participant. To examine the effects of environmental cues on PI, the 

environment was altered during the return path when participants were attempting to 

return to the remembered location of cone one. Three return conditions were used: A) 

No environmental change (Figure 2.1C), (B) removal of boundary cues (Figure 2.1D), (C) 

removal of surface detail (Figure 2.1E).  

Each return condition was presented three times per environment, with return 

conditions presented pseudo-randomly in each environment in order to ensure 

participants were relying more on proprioceptive and self-motion cues rather than 

allothetic strategies. 

Condition B was designed to increase dependence on self-motion cues and homing vector 

calculation by removing boundary cue information (Burgess et al, 2004), thereby placing 

a greater cognitive load on the PI network (Zhao and Warren, 2015). Condition C was 

designed to prevent feedback from surface motion during locomotion, thereby disrupting 

optic flow (Kearns et al, 2002) and increasing dependence on allocentric representations 

of space (Nardini et al, 2008). As such, return conditions B and C were considered 

analogous to “stress tests” for EC-network dependent navigation, with the prediction that 

a greater impairment in task performance would be observed during these conditions, 

compared with condition A. 

Performance in the iVR PI task was assessed using three outcome measures. Absolute 

distance error, the primary outcome measure, was defined as the Euclidean distance 

between estimated and actual location of cone one. 
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2.2.5. Calculation of outcome measures 

Absolute distance error reflects the Euclidean distance between the estimated position 

of cone 1 (coordinates) and the actual location of cone 1, as recorded by the trigger pull 

Figure 2.1. Path Integration Task. A) Illustration of the path integration task. Each 
numbered inverted blue cone is a location marker. Only one cone was visible at a time; 
upon reaching a blue cone it disappeared and the next one in the sequence appeared. Red 
arrows indicate the guided sequence along two sides of the triangle. The yellow arrow, the 
last side of the triangle, signifies the assessed return path, performed in the absence of any 
cones. B) Demonstration of VR equipment on a participant during the task, used with 
permission. C) Example environment from the head mounted display with textural and 
boundary cues present, with cone one and the controller shown. Texture and boundary 
cues are present in all trials when navigating between cones. D-F) Return conditions 
applied when attempting to return to the location of cone one only (yellow arrow (A)) and 
included no change (D), removal of environment boundaries (E) and removal of surface 
detail (F). 
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in line with previous research (Figure 2.2, Chrastil et al, 2015; Mokrisova et al, 2016). 

Calculated as Pythagorean formula:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  �(𝑥𝑥1 − 𝑦𝑦1)2 + (𝑥𝑥2 − 𝑦𝑦2)2 

where x1 and y1 are the coordinates of the participant’s estimated location of cone 1, x2 

and y2 are the coordinates of the actual location of cone 1.  

 

Two secondary outcome measures were included to deconstruct absolute distance errors 

into its proportional angular and linear components. These measures additionally 

controlled for between-trial variance in triangle geometry owing to the pseudo-random 

generation of cone locations that could affect task difficulty, although variance is minimal 

in paths less than 10 metres long (Harris and Wolbers, 2012). Proportional angular 

errors reflect the accuracy of performed rotation at cone three toward the participant’s 

estimated location of cone one compared to the optimal rotation required to align with 

cone one. Proportional linear errors reflected the accuracy of distance estimation, with 

the Euclidean distance travelled between cone three and the participant’s estimated 

location of cone one compared to the distance between cone three and actual location of 

cone one.  

 

Proportional angular errors (Figure 2.2B) are calculated as the ratio of rotation 

performed at cone 3 toward estimated location of cone 1 over the amount of rotation 

required at cone 3 for an optimal return to cone 1. Calculated by dividing the angles α by 

β. α and β were calculated using the following formula:   

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑣𝑣1����⃑  ×  𝑣𝑣2����⃑ , 𝑣𝑣1����⃑ ∙ 𝑣𝑣2����⃑ ) 

where the arctangent of the cross and dot product of two vectors (v1 and v2) gives the 

angle between them (θ). After translating data to the same space, α is the angle between 

the vector of cone 2 and cone 3, and the vector of cone 3 and triggered position (estimated 

position of cone 1). β is the angle between the vector of cone 2 and cone 3 and the location 

of cone 1. 
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Proportional linear errors (Figure 2.2C) were calculated using the same formula as 

absolute distance error, this is calculated twice using the x and y coordinates to estimate 

the Euclidean distance between cone 3 and triggered position (v1) and cone 3 and cone 1 

(v2). Proportional linear error is the result of v1 ÷ v2. 

2.2.6. Statistical Analysis 

Demographic differences between MCI+, MCI- and HCs were assessed using one-way 

ANOVA or Kruskal Wallis test where parametric assumptions were violated, whereas 

B) 

Figure 2.2. Illustrations of outcome measures for the path integration task. A) 
Absolute distance error is the primary outcome measure that reflects the distance 
between the estimated locations of cone 1 (goal) and the actual location of cone 1. B) 
Proportional angular error is a measure of rotation accuracy, represents the ratio of 
performed rotation toward the estimated location of cone 1 at cone 3 (α) divided by the 
degree of rotation required toward cone 1’s actual location (β). C) Proportional linear 
error represents the length of the performed return vector. 
 

A

C
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differences between HCs and total (combined) MCI were assessed using t-tests or non-

parametric Mann-Whitney U test. Categorical variables (e.g. sex) were assessed using 

Fisher’s exact Test.  

 

Between-group performance in the PI task compared all MCIs against HCs, as well as 

MCI+ against MCI-. Linear mixed effect modelling (LME) was used to assess the effect of 

MCI status on absolute distance error, proportional angular error and proportional linear 

error. LMEs are the most suitable method for analysing clustered datasets (27 trials with 

one of three return conditions per trial per participant), with missing data (excluded due 

to travelling ‘out of border’, see Results), and unbalanced designs (Moen et al, 2016). 

Alternative approaches such as either i) pooling all trials together would neglect 

between-participant variance, whereas ii) averaging observations for each participant 

would neglect within-participant variance (i.e. trial-associated variance, e.g. the distance 

between cones). Both alternative approaches may lead to misleading inferences and 

statements about statistical precision (Moen et al., 2016). 

 

Final model fixed effects included an interaction term between diagnosis and return 

condition, along with covariates of age, sex, years in education, ACE-R, NART and VR 

environment. Unique participant identifiers were used as the random intercept and VR 

environment as random coefficient, for further details see supplementary methods. 

Reported denominator degrees of freedom were computed using the conservative 

Satterthwaite approximation. Final LME models were informed by a mixture of a priori 

hypotheses and covariates, where appropriate they were refined using likelihood ratio 

testing for goodness of fit, whereas intraclass correlation coefficient was used to estimate 

the amount of variance explained by random effects. Separate models were used to assess 

PI performance in MCI+ vs MCI- and HCs vs pooled MCI for absolute linear error, 

proportional angular error and proportional linear error. The final LME used was:  

𝐴𝐴𝐷𝐷𝑖𝑖𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 + 𝛽𝛽2𝑀𝑀𝐶𝐶𝑎𝑎𝐶𝐶𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 ∗ 𝑀𝑀𝐶𝐶𝑎𝑎𝐶𝐶𝑖𝑖𝑖𝑖  + 𝛽𝛽4𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽5𝑆𝑆𝐴𝐴𝑥𝑥𝑖𝑖 + 𝛽𝛽6𝐴𝐴𝐶𝐶𝐸𝐸𝑖𝑖

+ 𝛽𝛽7𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽8𝑁𝑁𝐴𝐴𝐴𝐴𝑁𝑁𝑖𝑖 + 𝛽𝛽9𝐴𝐴𝑎𝑎𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑈𝑈0𝑖𝑖 + 𝑈𝑈1𝑖𝑖𝐴𝐴𝑎𝑎𝑣𝑣𝑖𝑖𝑖𝑖  +  𝐴𝐴𝑖𝑖𝑖𝑖    
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where DVij  is the dependent variable (e.g. absolute distance error, separate models for 

each outcome measure) in trial i (1...27) of participant j (1..86). β0 is the population mean, 

β1MCIj is the diagnostic status of participant j (HC vs MCI or MCI+ vs MCI- vs HC), β2Condij 

is the return condition (no change, no boundary cues, no textural cues) of trial i for 

participant j. An interaction term between MCI status and return condition (β3) is also 

included.  There were additional fixed effects of participant’s age (β4), sex (β5), years in 

education (β6), ACE-R (β7) and NART (β8) scores. U0j is the random intercept for each 

participant, while the three different VR environments were modelled as a fixed effect 

(β9), as well as random slopes that depended on participant (U1j). The term eij is the trial-

level error for each trial i of participant j. Visual inspection of residual plots did not reveal 

any significant deviations from homoscedasticity or normality. 

 

Finally, a separate LME was used to assess the effect of ageing on PI, this was required 

owing to the YCs not having as much demographic or neuropsychological data available, 

the final model was as follows: 

𝐴𝐴𝐷𝐷𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑎𝑎𝑎𝑎𝑖𝑖 ∗ 𝑀𝑀𝐶𝐶𝑎𝑎𝐶𝐶𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑎𝑎𝑎𝑎𝑖𝑖 + 𝛽𝛽3𝑀𝑀𝐶𝐶𝑎𝑎𝐶𝐶𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝑆𝑆𝐴𝐴𝑥𝑥𝑖𝑖 + 𝛽𝛽5𝐴𝐴𝑎𝑎𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑈𝑈0𝑖𝑖

+ 𝑈𝑈1𝑖𝑖𝐴𝐴𝑎𝑎𝑣𝑣𝑖𝑖𝑖𝑖  +  𝐴𝐴𝑖𝑖𝑖𝑖 

where variable nomenclature are consistent with the above formula except β2AgeCatj 

which refers to the category ‘young’ or ‘aged’.    

 

Between-group differences in cognitive performance across the neuropsychological test 

battery were investigated using one-way ANCOVA - rank ordered where parametric 

assumptions were violated (Conover and Iman, 1982) - covarying for age, sex and years 

in education. Separate linear regression models were used to assess absolute distance 

error (averaged per participant across all trials) and ROI volumetry, adjusting for age, 

sex, years in education and mean PI performance per participant group. Analyses were 

conducted across all participants and between MCI+ vs MCI-. Bonferroni correction was 

used to control for planned multiple comparisons. Residuals were visually inspected for 

violating linear assumptions, leverage and outliers.  

2.3. Results 
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2.3.1. Demographics and neuropsychological testing 

No significant difference in the distribution of sex was observed across younger and old 

adults (X2(1,72)= 0.51, p>0.05) and no differences in age, gender, or years in education 

were observed between all MCI and HCs, or between MCI+ and MCI- (Table 3.1). 

Following Bonferroni correction with an adjusted α of 0.002, the MCI group as a whole 

exhibited significantly more errors in all neuropsychological tests compared to HCs 

(p<0.002), whereas no difference between MCI+ and MCI- survived multiple comparisons 

(p>0.002). 

 

2.3.2. Immersive VR path integration task 

522 of the 2223 trials were excluded (23.48%) due to the ‘out of border’ boundary being 

reached during the return path across aged and young healthy controls. A significant 

difference in collisions with the ‘out of border’ boundary was apparent between younger 

and older adults (X2(1, 2223)= 106.40, p<0.001), older adults reached the boundary 

 Figure 2.3. Proportion of data excluded due to reaching the ‘out of bounds’ 
subdivided by participant group and return condition. Each bar represents the 
percentage of exclusion for that given return condition only. No within group 
difference in exclusions were observed across return conditions.*= p<0.05. 
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18.65% more than younger adults. The remaining 1701 trials were used for analysing 

performance differences between young and aged adults.  

 

Across all MCI, MCI-, MCI+ and HCs, 775 of the 2295 trials were excluded (33.77%) due 

to the ‘out of border’ boundary being reached during the return path, leaving 1520 viable 

trial remaining for analysis, no between group difference in ‘out of border’ warnings were 

observed (p>0.05). All participants successfully completed the PI task with no reported 

nausea or tolerability issues. 

 

Critically, no differences in out of bounds collisions were observed between return 

conditions within each volunteer group, indicating that any effect of return condition on 

performance is not attributable to out of bounds exclusions.   

 

2.3.3. Absolute distance error 

Aged controls, compared to the young group, exhibited larger absolute distance errors 

(t(1,121)=2.57, p=0.01, Figure 2.4A), with an estimated increase of 0.24±0.09cm 

compared to younger adults. No effect of sex or return condition was observed on 

absolute distance error.  

 

The MCI group as a whole exhibited significantly larger absolute distance errors than the 

HC group (t(1,107) = 3.24, p<0.01, Figure 2.5A), with an estimated 57.33±17.87cm 

increase in absolute distance error compared to HCs. MCI+ patients exhibited 

significantly larger absolute distance errors compared MCI- patients (t(1,163)= 4.69, 

p<0.001, Figure 2.5B), with an estimated increase of 97.56±20.34cm compared to MCI-. 

ACE-R score correlated with absolute distance errors across HCs and total MCI patients 

(t(1,85)= 2.89, p<0.01) and across MCI+ and MCI- groups (t(1,26)= 4.01, p<0.01), with 

lower ACE-R scores being associated with greater distance errors. 
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Similar main effects of diagnosis were observed in proportional linear errors between 

HCs and total MCI group (t(1,95)= 2.27, p<0.05), as well as between MCI+ and MCI- 

groups (t(1,87)= 3.09, p<0.001), but were not observed in proportional angular errors 

(p>0.05 across both groups; see supplementary results). No other fixed effect was 

associated with any of the outcome measures of the PI task. 

 

 

 

 

 

 

 

 

Figure 2.4 Effects of ageing on path integration performance (A-C). Group 
comparison of young and aged control participants across absolute distance errors (A), 
proportional angular errors (B) and proportional linear errors (C). Each marker 
represents the mean performance across trials of each individual: blue circles = aged 
controls, orange circle = young controls. ** = p<0.01. 

A) B) C) 
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A) 

 

B) 

Figure 2.5. Graph summarising the between group differences in path 
integration performance. Absolute distance error (Euclidean distance) error in 
metres (A-B). A) Group comparison between healthy controls and total MCI and B) 
between MCI- and MCI+. Each marker represents the mean performance across trials 
of each individual: blue circles = HCs; black asterisks = MCI without biomarkers; red 
triangles = MCI+; green inverted triangles = MCI-; Central gray line = mean; dark grey 
inner box= 95% confidence intervals; light grey outer box= 1 standard deviation. 
*p<0.05, ***p<0.001.  
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Healthy 
Controls 

(n=41) 
Mild Cognitive Impairment (MCI, n=45) 

 MCI (n=45) 
Biomarker 

Negative (n=14) 
Biomarker 

Positive (n=12) 

Age 69.3 ± 7.5 71.7 ±8.3n.s 71.1 ±9.0  75.4 ±7.0n.s 

Males (%) 15 (36%) 12 (63%) n.s 10 (71%)  9 (75%) n.s  

Years in Education 14.8 ±3.61 14.2 ±3.37 n.s 14.5 ±4.4  14.5 ±3.8 n.s  

ACE-R 97.2 ±3.2  89.3 ±5.4* 86.6 ±7.6 80.1 ±12.1 n.s  

MMSE 29.7 ±0.6 27.90 ±1.7* 27.6 ±2.6 25.0 ±1.7 n.s  

NART Errors 6.28 ±3.40  17 ±10.95* 13.1 ±8.9 9.1 ±6.8 n.s  

Rey 
Figure 
Recall 

Copy 36±0 34.2 ±2.7* 34.4 ±1.7 33.1 ±4.4 n.s  

Immediate  22.2 ±7.6 17.5 ±9.8* 13.8±8.3 9.6±9.1 n.s  

Delayed  21.3 ±7.9 15.8 ±11.0* 12.8±9.8 8.3 ±9.6 n.s  

FCSRT 
immedi
ate  

Free  34.3 ±5.1 24.9 ±11.5* 22.1 ±9.2 15.4 ±11.4* 

Total 47.6 ±0.6 44.7 ±5.7* 43.1 ±8.3 36.1 ±11.5 n.s  

FCSRT 
delayed  

Free 13.4 ±1.5 9.3 ±5.3* 7.9 ±5.1 4.8 ±4.8 n.s  

Total 16 ±0 14.8 ±2.3* 13.9 ±4.1 12.3 ±4.0 n.s  

Trails B seconds 77.2 ±26.5 145.6 ±72.8* 130.1 ±42.2 152.6 ±88.6 n.s  

Digit Symbol  64.2 ±14.5 49.9 ±14.1* 47.0 ±7.5 43.7 ±13.7 n.s  

Four Mountains  10.8 ±1.8 9.3 ±3.0* 7.3 ±3.4 6.8 ±2.2 n.s  

 

Table 2.1 Between group differences in neuropsychological test performance were 
assessed between HCs vs MCI as a whole, and MCI+ vs MCI-, scores indicate number of 
correct responses unless otherwise indicated. * = p<0.05, * = p<0.02 (Bonferroni-adjusted 
alpha); n.s = p>0.05). Abbreviations: 4MT – Four Mountains Test, ACE-R - Addenbrookes 
Cognitive Examination-Revised; MMSE - Mini-Mental State Examination; NART = National 
Adult Reading Test; FCSRT = Free & Cued Selective Reminding Test; Trails B = Trail Making 
Test B; Digit Symbol = Digit Symbol Substitution test. 
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2.3.4. Proportional Angular Error 

No significant difference in proportional angular errors were observed between 

young and aged controls (t(1,158)= 0.27, p>0.05, Figure 2.4B), nor between total 

MCI and HCs (t(1,128) = 1.79 p>0.05, Figure 2.5A) or between MCI+ and MCI- 

(t(1,136) = 1.06, p>0.05, Figure 2.5B). Although between total MCI and HCs, the 

fixed effect of MCI exhibited a non-significant trend toward a positive association 

with proportional angular error (p=0.07). 

 

2.3.5. Proportional Linear Error 

A significant difference in proportional angular errors were observed between 

young and aged controls (t(1,102)= 2.69, p<0.01, Figure 2.4C) where older 

controls exhibited an estimated decrease in proportional linear error of 

0.09±0.03cm. A significant difference between MCI and HCs (t(1,95)= 2.27, 

p<0.05, Figure 2.6C), as well as between MCI+ and MCI- (t(1,87)=3.09, p<0.01, 

Figure 2.6D) was also observed for proportional linear error. Compared to HCs, 

total MCI participants exhibited a decreased proportional linear error of 

0.12±0.05, whereas MCI+ patients exhibited a decrease of 0.23±0.07 compared to 

MCI-. 
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C) 

 

D) 

 

A) 

 
B) 

 

Figure 2.6. Graph summarising between group differences in proportional 
errors. Performance was evaluated between A-C) total MCI and healthy controls and 
B-D) healthy controls, MCI+ and MCI-. Each marker represents the mean performance 
across proportional angular errors (A-B) and proportional linear errors (C-D). Blue 
circles = HCs; black asterisks = MCI without biomarkers; red triangles = MCI+; green 
inverted triangles = MCI-; Central gray line = mean; dark grey inner box= 95% 
confidence intervals; light grey outer box= 1 standard deviation. 
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2.3.6. Effect of return condition 

No main effect of return condition (F(2,1597)= 1.43, p>0.05) or interaction 

between return condition and age category (F(2,1585)= 1.43, p>0.05) was 

observed on absolute distance error across young and aged control participants . 

Similarly, no main effects of return condition was observed on absolute distance 

error between HC and total MCI groups (F(2,1318)= 0.86, >0.05, Figure 2.7A) or 

between MCI+ and MCI- groups (F(2,384) = 0.56, p>0.05). Interaction terms 

between return condition and participant grouping were also included in the 

analyses to examine the differential influence of return conditions on PI 

performance for MCI+ (compared to MCI-) and MCI as a whole (compared to HCs). 

No significant main effect of return condition on proportional angular error was 

observed between HCs and total MCIs (F(2,1317)= 1.37 p>0.05) as well as across 

MCI+ and MCI- (F(2,395)= 0.13, p>0.05, Figure 2.7B). However, a trend toward an 

interaction between biomarker status and return condition was observed on proportional 

angular errors (F(2,398) = 2.93, p<0.05), however this did not survive multiple 

comparison correction. No interaction between MCI status and return condition was 

observed across MCI and HCs on proportional angular errors (F(2,1317) = 1.37, 

p>0.05).  

 

No significant main effect of return condition on proportional linear error was observed 

across HCs and all MCI patients (F(2,1310) = 0.96, p>0.05) or MCI+ and MCI– 

(F(2,381) = 0.37, p>0.05, Figure 2.7C). No significant interaction was observed 

between MCI status and return condition on proportional linear error (F(2,1317) = 0.38, 

p>0.05), nor between biomarker status (MCI+ and MCI-) and return condition 

(F(2,382) = 0.35, p>0.05). 

 

A summary of all HC/MCI data is displayed in Figure 2.8, along with 40% of YC 

data. Absolute distance errors are summarized in 2.8A (distance from centre, 

angle is arbitrary and included for visual purposes only). Proportional linear 

errors and proportional angular errors are concurrently displayed in figure 2.8B. 
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C) 

 

B) 

 

Absolute Distance Errors 

 

Figure 2.7. Within group effects on return condition for A) Absolute distance error, B) 
proportional angular error C) proportional linear errors. 
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Figure 2.8. Distribution of goal location (cone 1) errors by group. A) Illustration of absolute distance error from goal (cone 1, centre), each concentric 
circle represent 1 metre of absolute distance error. B) Distribution of normalized estimated location of cone1 translated and normalized to Cartesian space. 
Tip of the white arrow (0,1) represents the optimal linear return path to location of goal (cone 1). The border of the circle indicates optimal distance estimate, 
outside = overestimate (quadrants 1 and 2), inside = underestimate (quadrants 3 and 4). Yellow line indicates optimal rotation toward goal performed at cone 
3, left of yellow line = under-rotation (quadrants 1 and 3), right = over-rotation (quadrants 2 and 4). C) Distribution of estimated location of cone 1 by quadrant, 
expressed as a percentage of the group’s total responses. Each marker represents the outcome of a trial which did not reach ‘out of bounds’: yellow circles = 
young controls, blue circles = aged controls; black asterisks = MCI without biomarkers; red triangles = MCI+; green inverted triangles = MCI-. 

Distribution of Goal Location 
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2.3.7. ROC curves and classification accuracy.  

Area under the curve (AUC), sensitivity and specificity were estimated using k-

fold cross-validation (k=10), adjusted for age, sex and years in education. For the 

classification of total MCI patients from HCs, absolute distance error was 

associated with an AUC of 0.82 (Figure 2.9A, 95% confidence intervals (CI) = 0.71-

0.89), with an error ≥ 157cm yielding a sensitivity of 0.84 and specificity of 0.68. 

By comparison, the ACE-R was associated with an AUC= 0.86 (CI= 0.79-0.94)), 

TMTB (AUC= 0.79 (CI= 0.68-0.87)), 4MT (AUC= 0.73, (CI= 0.6-0.83)) and the 

delayed conditions of FCSRT (AUC= 0.73 (CI= 0.61-0.85)) and RFR (AUC= 0.72 (CI= 

0.60-0.83)). 

Classification accuracy of MCI+ from MCI- using absolute distance error was very 

high, with an AUC of 0.90 (Figure 2.9B, CI= 0.59-1), and errors ≥196cm yielding a 

sensitivity and specificity both of 0.92. This AUC was considerably higher than that 

of the comparator reference cognitive tests: ACE-R (AUC= 0.53 (CI= 0.24-0.73)), 

TMTB (AUC= 0.57 (CI= 0.22-0.69)), 4MT (AUC= 0.56, (CI= 0.22-0.72)) and the 

delayed conditions of FCSRT (AUC= 0.57 (CI= 0.22-0.68)) and RFR (AUC=0.55 (CI= 

0.22-0.68)), indicating a markedly superior ability of the PI test to differentiate 

MCI+ from MCI-.  
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A) 

 

B) 

 

Figure 2.9. Receiver Operating Characteristic plot. Accuracy of path integration task 
performance for classifying A) total MCI from HCs and B) MCI+ from MCI- patients. PI 
performance is represented by absolute distance error (solid red line). Classification of 
reference cognitive tests is represented by dashed lines for comparison. Addenbrookes 
Cognitive Examination-Revised (grey), Trail Making Test B (green), 4 Mountains Test 
(yellow), Free and Cued Selective Reminding Test – delayed free recall (blue) and Rey 
Figure Recall – delayed recall (purple). Abbreviations: ACE-R - Addenbrookes Cognitive 
Examination-Revised. Asterix indicates optimal operating point for absolute distance 
error. 
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2.4. Discussion  

This study demonstrated that performance on a novel immersive virtual reality 

path integration paradigm, based on the central role of the entorhinal cortex (EC) 

in navigation, declines with age and was impaired in MCI patients compared to 

healthy controls. In keeping with the study hypothesis that an EC-based 

navigation task can differentiate MCI patients at increased risk of developing 

dementia, we found that AD biomarker-positive patients drove the difference in 

navigation accuracy between MCI patients and controls. Consistent with the 

postulated role of the EC in navigation, and the specific role of the posteromedial 

EC subdivision (pmEC) in spatial processing, larger path integration performance 

errors were associated with smaller total EC and pmEC subdivision volumes 

across all participants.  Finally, and of high relevance for potential diagnostic 

usage, PI performance differentiated MCI biomarker-positive patients, i.e. those 

with prodromal AD, from biomarker-negative patients with markedly higher 

sensitivity and specificity than a battery of “gold standard” cognitive tests used in 

clinical and research practice.  

 

In keeping with previous research, older adults demonstrated impaired path 

integration compared to younger adults (Allen et al., 2004; Mahmood et al., 2009; 

Adamo et al., 2012; Harris and Wolbers, 2012), consistent with the decline of 

hippocampal and EC function with age (Lister and Barnes, 2009), although the 

neural correlates of younger controls could not be evaluated in the present study. 

Age-related reductions in grid-cell like activity in the EC of humans has been 

linked to PI deficits, particularly their magnitude and temporal stability (Stangl et 

al., 2018a) mirroring the temporal instability observed in the place cells of older 

rats (Barnes et al., 1997) as well as the reduced peak firing rate of grid cells in aged 

rodents (Fu et al., 2017). However, these deficits may also be explained by age-

related deficits in the vestibular system (Allen et al., 2017), that have shown to 

affect PI (Glasauer et al., 2002; Xie et al., 2017). More recently, Stangl et al (2018b) 

computationally deconstructed the source of age-related PI errors, finding that PI 

errors may result from noise in the neural integrator, likely the EC, arising from 

imperfect velocity estimation that accumulates proportional to distance and not 
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time. Such approaches may explain the present study’s findings that relative to 

younger controls, aged participants underestimate linear distance which 

contributes to larger absolute distance errors. 

 

 The navigational impairments observed in MCI patients are in line with previous 

navigation research (Hort et al, 2007; Laczó et al, 2014; Peter et al, 2018) and with 

the sparse literature on real-space PI in patients with MCI and AD dementia 

(Mokrisova et al, 2016). In the present study, significantly larger absolute distance 

errors were observed in MCI+ than in MCI-, with near-total separation of these 

two groups on this primary outcome measure, with the latter group exhibiting 

comparable performance to HCs. These data suggest that navigational deficits are 

relatively specific to AD and unrelated to deficits in other cognitive domains, such 

as attention or episodic memory that might underlie the symptomatology of MCI- 

patients. Secondary outcome measures suggested that MCI+ patients are 

specifically impaired in distance estimation, as evidenced by reduced proportional 

linear errors, in line with previous research (Hort et al, 2007), and may relate to 

tau-related disruption of grid cell activity (Fu et al., 2017; Tennant et al., 2018), 

given the role of grid cells  in computing a distance metric of an environment (Bush 

et al, 2015) as part of path integration (McNaughton et al, 2006).  

 

No group differences in performance errors were observed in response to the 

removal of boundary or surface detail cues. In the MCI+ group, a trend toward 

increased proportional angular errors in response to the removal of boundary 

(p=0.02) and textural (p=0.08) cues was observed, but this did not survive 

multiple comparison correction. Given that this effect did not reach corrected 

statistical significance, any inferences need to be made with caution. Nonetheless 

it is worth noting that this trend is consistent with previous research that reported 

heightened increased reliance on landmark cues (Kalová et al, 2005) and 

heightened rotational deficits in response to the disruption of optic flow (Kavcic 

et al, 2006; Mapstone et al, 2008). Importantly compared to the no change return 

condition, the manipulation of environmental cues during triangle completion had 

no effect on any of the outcome measures or the frequency of out-of-bounds 
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collisions. This absence of effect indicates that’s neither distal boundary cues nor 

textural cues were used as local landmarks that could be used for self-localisation 

or return vector calculation. This reinforces the notion that this task is a true PI 

task that cannot be informed by rich environmental cues. 

 

PI performance differentiated the total MCI patient group from HCs with moderate 

classification accuracy (AUC 0.82), reflecting the large variance in performance 

within the former group. By comparison, PI performance was highly sensitive and 

specific for prodromal AD, classifying this group with an accuracy (AUC 0.90) that 

was markedly higher than that of reference cognitive tests of episodic memory, 

attention and processing speed widely used to diagnose prodromal AD and as 

outcome measures in clinical trials.  

 

This work therefore contributes to the growing body of evidence that spatial 

behavioural tests may have added value, above and beyond traditional cognitive 

tests, in detecting pre-dementia AD (Moodley et al. 2015, Allison et al (2016), 

Ritchie et al, 2018, Coughlan. et al, 2018). The use in this study of an EC-based 

navigation task potentially allows detection of AD in its very earliest stages, prior 

to hippocampal involvement, and builds on previous work showing reduced grid 

cell-like activation in the EC during an fMRI navigation task in young adults at risk 

of AD due to APOE-e4 genotype (Kunz et al, 2015). 

  

This study has limitations. The sample size of both MCI+ and MCI- groups was 

relatively small, and these results therefore need to be considered initial findings 

that require replication in larger scale studies. The study would have benefitted 

from more complete data, for example neuropsychological data in younger 

controls. Another limitation concerns the test space available with the commercial 

iVR hardware. The use of a larger space, which will be possible with next 

generation iVR, would likely result in the i) exclusion of fewer trials, ii) evaluation 

of proportional linear errors that is not skewed toward an undershoot, and iii) the 
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compounding of vector computation errors (angular and linear estimates) that 

would likely culminate in larger between group performance differences.  

 

In conclusion, this study demonstrates that performance on an EC-based iVR path 

integration task is sensitive and specific for prodromal Alzheimer’s disease, with 

greater classification accuracy than that of a battery of current “gold standard” 

cognitive tests. Given that this test is based on understanding of EC grid cell 

activity, these findings have implications not just for early diagnosis but also for 

translational AD research aimed at understanding mechanistic links between 

impaired cell activity and behaviour in AD. The task used in this study, combined 

with analogous navigation tasks in animal models of AD, would help address the 

need for outcome measures capable of comparing treatment effects across 

preclinical and clinical phases of future treatment trials aimed at delaying or 

preventing the onset of dementia. 
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Chapter 3 Object-Location Task 

 

3.1. Introduction 

Object-location memory is an everyday cognitive function that is contingent upon 

the complex binding of object and contextual representations, a key component of 

episodic memory (Postma et al., 2008). Episodic memories are partially 

comprised of information pertaining to objects and environments, the processing 

of which is localized to the parahippocampal gyrus via the ventral ‘what’ and 

dorsal ‘where’ visual streams that converge on the lateral and medial EC, 

respectively (Postma et al., 2008; Knierim et al., 2014; Gillis et al., 2016). The EC 

appears to partially bind object and environment representations (Hunsaker and 

Kesner, 2013; Tsao et al., 2013; Wilson et al., 2013b; Yoo and Lee, 2017; Hoydal et 

al., 2018), that are subsequently projected to the hippocampus where they are 

cohesively bound with salient temporal, identity and emotional information 

(Ranganath, 2010; Yonelinas et al., 2019). Therefore the detection of deficits in 

object and object-environment association processing may aid in the detection of 

Alzheimer’s disease (AD)-induced EC deficits prior to hippocampal-dependent 

episodic memory decline. 

 

The perirhinal cortex (PC) is a phylogenetically conserved structure whose 

function in the encoding and recognition of object detail and location is implicated 

in the mediation of object processing by both human neuroimaging (Buffalo et al., 

2006; Awipi and Davachi, 2008; Staresina and Davachi, 2008, 2010; Staresina et 

al., 2011; Clarke and Tyler, 2014, see Brown et al., 2012 for review) and animal 

research (Winters and Bussey, 2005; Barker et al., 2007; Eichenbaum et al., 2007; 

Albasser et al., 2009). Specifically, the PC supports feature encoding that 

culminates in a holistic conceptual representation of a given object (Winters and 

Bussey, 2005; Bellgowan et al., 2009; Deshmukh et al., 2012; Knierim et al., 2014; 

Connor and Knierim, 2017) that is required for disentangling the ambiguity of 

perceptually or semantically complex objects (Bussey et al., 2003, 2005; Tyler et 

al., 2004; Barense et al., 2010; Cowell et al., 2010; Taylor et al., 2011; Kivisaari et 
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al., 2012). The strong evidence for the PC’s role in object processing is 

underpinned by neurons that exhibit little spatial modulation in the proximity of 

objects (Deshmukh et al., 2012). Recently, performance of healthy older adults in 

an object-recognition paradigm, targeting the function of the PC and lEC, was 

predictive of future cognitive decline (Fidalgo et al., 2016). 

 

The lEC is a central relay for PC afferents to the hippocampus and is critical for the 

‘object processing stream’ model of spatial cognition (Knierim et al., 2014) whose 

function heavily overlaps with the PC, given the high interconnectivity of these 

regions (Witter et al., 1989; Suzuki and Amaral, 1994; Burwell and Amaral, 1998; 

Kerr et al., 2007). In rodents, lEC lesions induce deficits in object recognition 

(Murray and Richmond, 2001; Vago and Kesner, 2009; Kuruvilla and Ainge, 

2017a) thought to support the hippocampus’ role in novelty detection via the 

lateral perforant path (Murray et al., 2007). Van Cauter et al., 2013 demonstrated 

that lEC lesions produce significant deficits in object processing but not in spatial 

tasks, mirroring the non-spatial impairments induced by selective inactivation of 

the lateral perforant path (Hunsaker et al., 2007). Recently two complementary 

experiments have demonstrated that the human anterolateral EC (alEC) volume 

was associated with both object-configuration processing and object-location 

memory (Yeung et al., 2017, 2018). These findings coincide with lEC activity 

observed during object discrimination fMRI tasks; where correct identification of 

object foils was associated with lEC activity (Reagh and Yassa, 2014; Reagh et al., 

2018). This also mirrors the alEC’s role in processing object-information, distinct 

from the posteromedial EC’s (pmEC) role in scene processing (Schultz et al., 2012; 

Maass et al., 2015; Berron et al., 2018b) and path integration.  

 

Unlike the PC, the lEC appears to additionally integrate spatial information 

(Deshmukh et al., 2012; Hunsaker and Kesner, 2013; Wilson et al., 2013a, b; Yoo 

and Lee, 2017) as evidenced by object-selective cells whose activity is thought to 

reflect a memory trace of an object removed from a given environment 

(Deshmukh and Knierim, 2011; Tsao et al., 2013). Homologous trace cells have 

recently also been reported in humans (Qasim et al., 2018)Importantly, the 
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activity of these cells exhibit stronger response to 3D objects (Hargreaves et al., 

2005; Deshmukh and Knierim, 2011; Yoganarasimha et al., 2011). Evidence 

suggests that the lEC encodes objects in an egocentric reference frame (Wang et 

al., 2018) likely supported by spatial information from the mEC which contains 

object-vector cells thought to selectively encode direction and distance from a 

proximal object (Hoydal et al., 2018). The inactivation of these cells induce deficits 

in identifying an object’s translocation (Wilson et al., 2013a; Tennant et al., 2018) 

whereas entire EC lesions disrupt object-context associations (Charles et al., 

2004) and appears critical for object-context binding, the foundation of episodic 

memory and the hallmark cognitive deficit of AD. These findings coincide with the 

lEC’s role in associative memory between objects and contexts (Hunsaker and 

Kesner, 2013; Wilson et al., 2013b; Chao et al., 2016; Kuruvilla and Ainge, 2017a). 

Critically, both components of the anterior pathway, namely the lEC and PC, 

exhibit dysfunction in preclinical AD in both humans and transgenic mice ahead 

of either mEC or hippocampal impairment (Khan et al., 2014). Interestingly alEC 

atrophy has been reported in in individuals at risk of AD and were predictive of 

impaired performance on global tests of cognition in older adults (Olsen et al., 

2017). Indeed performance on an object-context association task has 

demonstrated high sensitivity and specificity for the differentiation of early AD 

from MCI and MCI from healthy controls (Wang et al., 2013). 

 

The hippocampus is posited to underpin the cognitive map and episodic memory 

via its role in the consolidation and long-term storage of object-detail (Reger et al., 

2009; Clarke et al., 2010; Oliveira et al., 2010), recognition of familiar objects in 

novel contexts (O’Brien et al., 2006; Piterkin et al., 2008) and processing object-

location information (O’Keefe and Nadel, 1978; Wiebe and Stäubli, 1999; Mumby 

et al., 2002; Crane and Milner, 2005; Buffalo et al., 2006; Komorowski et al., 2009; 

Manns and Eichenbaum, 2009; reviewed by Bird and Burgess (2008) and Strien et 

al (2009)). This is most apparent when object-representations are dependent 

upon an allocentric framework (Parslow et al., 2004a, 2005; Hartley, 2007; 

Fidalgo and Martin, 2016) or in reference to a landmark or boundary (Doeller et 

al., 2008). Furthermore, the encoding and consolidation of object-location 
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information is dependent on the hippocampus (Yamada et al., 2017), although the 

degree of hippocampal recruitment is influenced by the duration between 

encoding and retrieval (Balderas et al., 2008), as well as the configuration, 

repetition and congruency of stimuli (Goh et al., 2004; Spanswick and Sutherland, 

2010). Transgenic AD mice exhibit greater deficits in object-location than object 

recognition (Creighton et al., 2019, see Bengoetxea et al., 2015 for review), 

correspondingly humans object-location deficits have been observed in MCI 

patients (Troyer et al., 2008; Kessels et al., 2010b; Külzow et al., 2014; Hampstead 

et al., 2018) and are highly pronounced in patients with AD dementia (Bucks and 

Willison, 1997; Brandt et al., 2005; Vacante et al., 2013; Wang et al., 2013).  

 

Knerim et al (2014) posited that object-spatial binding occurs in the 

hippocampus(Lee et al., 2005; Langston and Wood, 2010; Barker and Warburton, 

2011a), however recent evidence suggests that object-location within binding 

occurs upstream of the hippocampus in the lEC. This notion is supported by the 

presence of object-trace cells in both the rodent lEC (Tsao et al., 2013) and human 

EC (Qasim et al., 2018). Furthermore, lesions to the lEC also impair object-location 

memory (Wilson et al., 2013a; Kuruvilla and Ainge, 2017b). This notion is also 

complimented by recent human evidence indicating that alEC volumes were 

predicted by alEC but not by hippocampal subfield volumes (Yeung et al., 2019a). 

Similar results were also observed in a continuous measure object-location 

paradigm that found that the EC, but not the hippocampus was predictive of 

object-replacement accuracy in MCI patients (Hampstead et al., 2018). In these 

clinical cohorts, object-location performance was coupled to bilateral 

parahippoampal and entorhinal cortex volumetry (Hampstead et al., 2018) and 

activity in the left hippocampus (Hampstead et al., 2011) and is associated to the 

spread of tau pathology and episodic memory decline (Maass et al., 2018b).  

However, the aforementioned human studies have relied on non-immersive 

environments and/or 2d representations of objects, compromising both the direct 

translation from animal research and the ecological validity of the task. The 

current study aims to address this by using a multicomponent iVR object-location 

task (OLT) comprised of three subtasks: i) object-replacement, as a function of the 
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alEC/hippocampus; ii) object recognition, as a function of both the alEC and PC; 

and iii) object-context association, as a function of the alEC.  

 

The primary objective of this study was to test the hypotheses that compared to 

aged-matched controls (HCs), MCI patients are impaired on the iVR object location 

task designed around the function of the alEC and medial PC (Brodmann’s area 35 

(BA35)) and hippocampus. It is predicted that these deficits will be more 

pronounced in those with CSF evidence of underlying AD (MCI+) than those 

without (MCI-). 

Secondary hypothesis include: 

1. Impairments in the OLT will differentiate MCI from HCs and MCI+ from 

MCI- with greater sensitivity and specificity than a battery of 

neuropsychological tests.  

2. Greater impairment in all components of the OLT will be observed in HCs 

compared to younger controls (YCs).  
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3.2. Methodology  

3.2.1. Participants  

Analyses examined the effect of aging (YCs (n=53) vs HCs (n=24)), MCI (HCs vs 

MCI (n=23)) and prodromal AD (MCI+ (n=9) vs MCI- (n=7)). Details of the 

diagnostic, inclusion and exclusion criteria are detailed chapter 2.2.1, group 

abbreviations are consistent with chapter 2.  

 

iVR Object-Location Task (OLT) 

The object-location task is subdivided into 3 subtasks with distinct aims to 

evaluate: 1) object-replacement, 2) object recognition, and 3) object-context 

association memory. 

 

3.2.2. Object-replacement subtask 

The subtask consisted of 3 distinct environments, each with unique distal cues and 

4 discrete objects per environment, totalling 12 object-replacement trials per 

participant.  

Upon entering an environment, participants had 30 seconds to habituate and 

explore the environment, and to describe environmental details aloud. For each 

environment, the subtask was divided into 2 phases: object-position encoding and 

object-replacement. Object-position encoding comprised: 

 

1. An object appeared within the test space on a pedestal, and participants 

were instructed to study the details and location of the object. 

2. Once satisfied with their study of (1), participants were told to walk 

into the object, at which point it would disappear and a displacement 

marker would appear.  

3. Participants walked to the displacement marker and a new object 

would subsequently appear.  
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Points 1-3 were repeated for every object in all environments. Objects were 

presented sequentially on a 1m high pedestal (Figure 3.1A) and could be examined 

in three-dimensions by walking around the object. No time limit was set for object-

position encoding. Displacement markers were designed to force reliance on an 

allocentric representation of space and distal landmarks by inhibiting positional 

encoding relative to another object’s position (important for the implicit 

formation of object-context associations). The generation of a new object was 

pseudorandom from a pool of 25 objects, as such objects varied between 

participants. Object positioning was also pseudorandom within the environment, 

although could not be generated within 60cm of either another object or the 

participant. After all 4 objects had been encoded in a given environment, points 1-

3 were repeated for the same object-positions but presented in a new order, giving 

participants two attempts at encoding all object and positions before replacement.  

 

In total, 3 encoding-retrieval phases took place, one per environment. Encoding-

retrieval phases occurred sequentially, each environment comprised two 

encoding trials and one retrieval trial.  
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Figure 3.1. Illustration of Object-task. 1) Object-replacement task. Left: 
Encoding- 4 objects are presented one at a time in pseudo random order and 
locations. Participants have two attempts to encode all 4 objects and their 
locations. Right: Retrieval- participants attempt to return objects to their correct 
location. Encoding and Retrieval are repeated across distinct objects and 
environments, totalling 12 objects across 3 environments. 2) Object 
familiarity/novelty task. Following completion of object-replacement task, 
participants are tasked with identifying a previously seen object (familiar) from 
a similar foil (novel, left), rating their confidence in their decision (right). 3) 
Finally, participants attempt to identify which object was present in a given 
environment during the object-replacement task from a selection of 4 objects.  
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Immediately following a given environment’s second encoding phase, a retrieval 

phase started in which participants were tasked with returning a given object to 

its location, in other words, where they found it. Participants were re-immersed 

in a given environment and asked to estimate a given object’s location using a 

handheld controller; the controller projected a constant laser at the end of which 

was a transparent pedestal. Object location was indicated by pointing the 

controller to the estimated location and pulling the trigger. A reminder of the 

target object was present in the bottom right of the participant’s visual field 

throughout retrieval. Participants were free to walk around the environment, had 

no time limit to perform any component of the subtask, and no feedback on 

performance was given. A circular boundary wall enclosed the test space at a 

height approximately 20cm below the participant’s height. This served as a local 

cue for object-replacements.  

 

Ahead of participant testing, the maximal encoding space was determined by the 

size of the testing room. However in order to maximise the opportunity for 

Figure 3.2. Illustration of Absolute distance error 1) Absolute distance error 
(primary outcome measure) is the distance between the returned object 
location and veridical object location (red line). The green line shows the laser 
used by the participant to indicate object location.  



 72 

retrieval errors, the boundary wall was set at twice the radius of the encoding 

environment. All HCs and MCI participants were tested using a 3.5m2 encoding 

space, whereas YCs were tested on a variable size arena ranging from 4x3.2m to 

4x3.7m, correspondingly YC data was translated to be consistent with a 3.5m2 as 

discussed in section 3.2.3. 

 

The primary outcome measure was the absolute distance error between an 

object’s estimated location and its actual location (Figure 3.2). However, 

additional outcome measures were defined and evaluated a posteriori following 

researcher observations during testing. Namely, MCI patients seemed more likely 

than HCs to exhibit specific types of error during object replacement, and these 

types of errors seemed most pronounced in MCI+ patients. Error types were 

therefore characterised as follows (summarised in Figure 3.3):  

i) Retrieval failures (i.e. guesses, Figure 3.3B – bottom right quadrant). 

ii) Swap errors (i.e. putting an object in a different objects veridical 

location): 

A. Misattribution swap error – Object A is returned to the veridical 

location of object B, indicative of correct location recall but incorrect 

association between object and location. 

B. Content swap error – Object A is returned to the veridical location 

of object B and object B is returned to the veridical location of object 

A.  
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Retrieval failures, misattribution and swap errors were categorised using a 

manual protocol that examined the graphical data of all object within each 

environment. An object was evaluated only if the closest object was not the target 

location and the following criteria controlled for general inaccuracies. Retrieval 

failures were defined as object-replacements that appear random deviating from 

the veridical location of all objects in both angle and proximity. For all scenarios 

the following were considered: i) the participant’s position within the 

environment relative to both the veridical and estimated location of the object, ii) 

the distance between the veridical and estimated location of the target object and 

iii) linear or angular proximity to the veridical location of other objects. Whilst 

some 2D visual-working memory tasks have achieved success using algorithmic 

approaches (Pertzov et al., 2012, 2013; Liang et al., 2016), the degrees of freedom 

in the iVR task were too high and produced too many false positives upon 

Figure 3.3. Participant data illustrating swap scenarios. A) Exemplary, B) 
Retrieval Failure, C) Misattribution Error, D) Content-location derived swap 
error. Cyan circles = true object location; *= estimated return location; dotted 
lines indicate the absolute distance error between an object and its veridical 
location. 

A) B) 

C) D) 
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inspection for such methods to be employed here. Coco Newton and I manually 

inspected all data and categorised errors according to the aforementioned criteria.  

3.2.3. Object-recognition subtask 

Following completion of the object-replacement subtask, a two-alternative forced 

choice object recognition subtask was used to examine participant discrimination 

accuracy for familiar (i.e. ‘old’) from novel (i.e. ‘new’) objects (Figure 3.1B). Novel 

objects were designed to be very similar to familiar objects with one 

distinguishing feature, for example a change in colour or property. The 

presentation order of objects was pseudo-random.  

 

3.2.4. Object-environment association subtask 

Following completion of 12 object-recognition trials, participants were re-

immersed at random into one of the three environments. Participants were tasked 

to select the object that was seen in this environment from a choice of 4 (3 foils, 

Figure 3.1C). No time limit was set. Performance was assessed by the percentage 

of objects correctly identified. 9/12 object-environment associations were used 

with unique object combinations per trial. For each object-environment trial, foil 

objects prioritised objects that were not present in previous trials or had been 

previously selected (correctly or incorrectly). Given the small amount of objects 

used (12 total), combined with the 4-object force choice, repetition of foils was 

unavoidable. This novel approach to studying object-context associations offers 

two distinct advantages: i) object-context associations are encoded implicitly 

during encoding and ii) participants can re-explore all objects and environments 

before making a response, overcoming the context shift decrement (Hayes et al., 

2007). 

 

3.2.5. Data processing and Statistics  

Calculation of absolute distance errors are detailed in 3.3.5. Differences in test 

arena size between YCs (tested in a variable size test arena ranging from 3.2x4m 
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to 3.7x4m) and HCs (3.5m2) could mask any effect of aging on object-replacement 

performance, given that the size of the test arena dictates the distance between 

objects and larger environments beget larger errors. Therefore all Cartesian 

coordinates for the YC data were scaled to a 3.5m2 room, to match the HC and MCI 

data. 

Demographic data were assessed using two-sample t-tests, or Kruskal-Wallis test 

if parametric assumptions were violated. Object-replacement outcome measures 

were not normally distributed as confirmed by both visual inspection of graphs 

and the Shapiro-Wilks test. Categorical distributions were analysed using Fisher’s 

exact test.  

 

Object-replacement data were analysed using a log-linked generalized LME 

(GLME). GLMEs permit the analysis of non-normal clustered data in the presence 

of random effects (Bolker et al., 2008), and to compare different linking functions 

that relate the dependent variable to predictor variables. The log-link Gaussian 

model was the best fitting distribution. Such an approach also avoids transforming 

response variables, which can obscure and bias interpretation of the results (Lo 

and Andrews, 2015).  

 

The final GLME model was refined using likelihood ratio testing for goodness of 

fit. Separate models were used for YCs vs HCs, for HCs vs pooled MCI and for MCI+ 

vs MCI-. The final LME used absolute distance error as the response variable, with 

MCI, environment, age, sex, years of education and ACE-R as predictor variables. 

Object number and environment number were specified as random coefficients 

with by-participant random intercepts (similar to the formula outlined in 2.2.6). 

The effect of ageing was assessed between YCs and HCs in a similar model using 

age category (young or aged) as the predictor variable but without ACE-R or years 

in education covariates. 

 

Finally, a logistic GLME was used to assess object recognition and object-context 

association subtask performance. Correct responses were used as the outcome 
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measure with the same aforementioned fixed effects with, participant specified as 

a random intercept. Object recognition was additionally assessed using multiple 

regression with measures of signal sensitivity (d’) and response bias (C, McNicol, 

2005) as response variables, rank ordered where parametric assumptions were 

violated. 
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Table 3.1.  Demographics and neuropsychological test scores  

 Healthy 
Controls 
(n=24) 

Mild Cognitive Impairment (MCI, n=23) 

 MCI (n=23) 
Biomarker 
Negative 
(n=9) 

Biomarker 
Positive (n=7) 

Age 68.9 ±5.8 72.2 ±7.3 n.s 68.3 ±6.2 74.1 ±7.2 n.s 

Males (%) 8 (33%) 15 (65%)  n.s 5 (71%)   7 (77%) n.s   

Years in Education 15.5 ±3.9 14.8 ±3.6 n.s 13.4 ±3.5 15.1 ±4.2 n.s 

ACE-R 97.8 ±2.5 85.3 ±10.8* 89.9 ±7.2 79.2 ±13.5 n.s 

MMSE 29.9 ±0.3 26.7 ±4.5* 28.7 ±2.2 24 ±6.0 n.s 

NART Errors  6.2 ±3  12.0 ±8.7* 16.86 ±10.9 9.4 ±7.0 n.s  

Rey 
Figure 
Recall 

Copy 36 ±0  33.6 ±3.7* 35 ±1.2 32.7 ±5.0 n.s 

Immediate  22.9 ±6.9 13.3 ±9.8 n.s 15.9 ±6.9 9.2 ± 10.7 n.s 

Delayed  22.2 ±7.1  12.9 ±10.8 n.s 15.4 ±8.6  8.4 ± 11.1 n.s 

FCSRT 
immedi
ate  

Free  34.3 ±5.1 19.8 ±12.0* 24 ±8.9 13.6 ±11.8 n.s 

Total 47.8 ±0.5 40.7 ±10.4* 44.6 ±7.8 33.9 ±12.4 n.s 

FCSRT 
delayed  

Free 13.4 ±1.4 7.6 ±5.7* 9.4 ±5.0 4.9 ±5.6 n.s 

Total 16 ±0 13.74 ±3.6* 15 ±2.7 11.6 ±4.4 n.s 

Trails B seconds 67.8 ±21.1 147.3 ±80* 123.0 ±40.4 167.6 ±97.6 n.s 

Digit Symbol  67.8 ±13.1 45.4 ±12.0* 50.3 ±6.1 42 ±15.5 n.s 

Four Mountains  11.0 ±1.9 8.3 ±3.1* 8.4  ±3.7 7.3 ±2.4 n.s 

Table 3.1. Between group differences in demographics and neuropsychological 
test performance were assessed between HCs vs MCI as a whole, and MCI+ vs MCI-, 
scores indicate number of correct responses unless otherwise indicated. * = p<0.05, * 
= p<0.002 (Bonferroni-adjusted alpha); n.s = p>0.05). Abbreviations: 4MT – Four 
Mountains Test, ACE-R - Addenbrookes Cognitive Examination-Revised; MMSE - Mini-
Mental State Examination; NART = National Adult Reading Test; FCSRT = Free & Cued 
Selective Reminding Test; Trails B = Trail Making Test B; Digit Symbol = Digit Symbol 
Substitution test. 
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3.3. Results  

3.3.1. Demographics and neuropsychological testing 

No significant differences in age, sex or years in education were observed between 

either HCs and MCI or MCI+ and MCI- (p>0.05). Following Bonferroni correction 

with an adjusted α of 0.002, significant differences were observed between HCs 

and MCI across the neuropsychological test battery, summarised in table 1. No 

significant differences were observed between MCI+ and MCI- across the 

neuropsychological test battery (p>0.05). 

 

3.3.2. Object-replacement subtask 

Across YCs and HCs, environment (t(1,907)= -2.82,  p<0.01) was a significant 

predictor of absolute distance error that survived the Bonferroni correction (α = 

0.01). No difference between YC and HC groups (i.e. effect of ageing) was observed 

(t(1,918)=-1.45, p<0.05). A significant difference in absolute distance errors were 

observed between HCs and MCI (Figure 3.4B, t(1,543)= 4.23, p<0.001), where MCI 

was associated with an estimated increase of 50 ± 12cm compared to HCs. An 

effect of sex (t(1,543)= -2.42, p<0.05) was observed but did not survive the 

Bonferroni-adjusted alpha of 0.007. No difference in absolute distance error was 

observed between MCI+ and MCI- (Figure 3.4C, t(1,183)= 1.30, p>0.05).  
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3.3.3. Object-recognition subtask 

 The ability to distinguish novel from familiar objects was evaluated using three 

measures (table 2, Figure 3.5): 1) frequency of correct responses, 2) sensitivity, as 

measured with d’ and 3) response bias, as measured with C (McNicol (2005), note 

that the latter two measures are obtained by averaging over trials). No difference 

in the frequency of correct responses were observed between YCs and HCs (Figure 

3.5A, t(1,920)= 0.85, p>0.05), HCs and MCI (t(1,557)= 0.26, p>0.05) or MCI+ and 

MCI- (t(1,187)= 0.14, p>0.05). No group differences in d-prime were observed 

(Figure 3.5B) between YCs and HCs (t(1,74)=-0.40, p>0.05), HCs and MCI (t(1,41)= 

0.31, p>0.05) or MCI+ and MCI-  t(1,11)=-1.96, p>0.05).  No differences were found 

in response bias between YCs and HCS (t(1,74)=-1.03, p>0.05) or MCI+ and MCI- 

(t(1,11)= -0.71, p>0.05), though MCI patients exhibited a more conservative 

response bias than HCs (Figure 3.5C, t(1,42)= 2.38, p<0.05). 

Figure 3.4. Discrimination of object familiarity between groups. A) 
Percentage correctly identified as either novel or familiar, B) Discrimination 
sensitivity as measured by d’ and C) Response bias as measured by C. Yellow circles 
= YCs, blue circles = HCs; black asterisks = MCI without biomarkers; red triangles 
= MCI+; green inverted triangles = MCI-. Central line = mean; dark grey box= 95% 
confidence intervals; whisker = 1 standard deviation. 

A) 

 

B) 

 

C) 
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Table 3.2. Summary of between group differences in object recognition 

Group Trials 
(n) 

Hits False 
Alarms 

Correct 
Rejections 

Misses Sensitivity 
(d-prime) 

Response 
Bias (C) 

YCs 536 214 (52.2) 122 (22.7) 280 (39.9) 20 (3.7) 0.18    0.73 

HCs 288  133 (46.2) 57 (19.7)  91 (31.6) 7(2.4)     0.18    0.74 

MCI 182 103 (56.6) 43 (23.6) 103 (56.6) 12 (6.6)     0.20    0.72 

MCI+ 108 48 (44.4) 19 (17.6) 39 (36.11) 2 (1.9)     0.20    0.73 

MCI- 84 37 (44.0) 12 (14.3) 28 (33.3) 7 (8.3)     0.18    0.71 

Figure 3.5 Discrimination of object familiarity between groups. A) Percentage 
correctly identified as either novel or familiar, B) Discrimination sensitivity as measured 
by d’ and C) Response bias as measured by C. Yellow circles = YCs, blue circles = HCs; black 
asterisks = MCI without biomarkers; red triangles = MCI+; green inverted triangles = MCI-
. Central line = mean; dark grey box= 95% confidence intervals; whisker = 1 standard 
deviation. 

A) 

 
B) C)
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3.3.4. Object-environment association subtask  

Across YCs and HCs, a significant effect of environment (F(2,687)= 9.86, p<0.001) 

was observed on hit rate (i.e. the number of correct object-context associations), 

which survived Bonferroni correction (alpha = 0.01). Hit rate was greater in 

environment 3 compared to either environment 1 (Figure 3.6D, β=0.89± 0.22) or 

environment 2 (β=0.93± 0.21). However, no effect of ageing was observed (Figure 

3.6A, p>0.05).  Across HCs and MCI, a significant effect of environment 

(t(2,415)=1.84, p<0.05) was observed, however environment did not survive 

Bonferroni correction (alpha = 0.008). However, no effect of MCI status was 

observed (Figure 3.6B, p>0.05). Across MCI+ and MCI- an effect of years in 

education (t(1,136)= 2.81, p<0.01) was observed, with more years in education 

predicting more correct responses (β=0.17± 0.06). No effect of biomarker status 

was observed (Figure 3.6C, p>0.05). 

 

Table 3.3. Object-environment association performance as indicated by hit 

rates 

Group Trials (n) Total Hit Rate Env 1 Env 2 Env 3 

YCs 477 334 (70%) 106 (66.7%) 98 (61.6%) 130 (81.8%) 

HCs 216 152 (70.4%) 45 (62.5%)  49 (68.1%) 58 (80.6%) 

MCI    207 126 (39.1%) 41 (59.4%) 39 (56.5%) 46 (66.7%) 

MCI+     81 45(55.6%) 14 (51.9%)  13 (48.2%) 18 (66.7%) 

MCI-     63 44 (69.8%) 16 (76.2%) 15 (71.4%)  13 (61.9%) 
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3.3.5. Classification accuracy of the object-location task 

 Area under the curve (AUC), sensitivity and specificity were estimated using k-

fold cross-validation (k=10), adjusted for age, sex and years in education. For the 

classification of total MCI patients from HCs, absolute distance error was 

associated with an AUC of 0.89 (Figure 3.7, 95% confidence intervals (CI) = 0.73-

0.95), with an error ≥ 82cm yielding a sensitivity of 0.87 and specificity of 0.92. 

Whereas performance in both object recognition (AUC= 0.52 (CI= 0.31-0.66)) and 

object-environment association (AUC= 0.67 (CI= 0.48-0.80)) subtasks were less 

effective at differentiating MCI from HCs. By comparison, the ACE-R was 

Figure 3.6. Correct discrimination of object-environment association. A-C) 
Percentage of objects correctly identified as belonging to the environment in 
question. Yellow circles = YCs, blue circles = HCs; black asterisks = MCI without 
biomarkers; red triangles = MCI+; green inverted triangles = MCI-. Central line = 
mean; dark grey box= 95% confidence intervals; whisker = 1 standard deviation. D) 
Effect of environment on association accuracy across all participants (% correct). **= 
p<0.01.  

A) B) 

 

C) 

 
D) 
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associated with an AUC= 0.84 (CI= 0.69-0.94)), TMTB with an AUC= 0.83 (CI= 0.67-

0.93), 4MT with an AUC= 0.73 (CI= 0.53-0.93), the delayed conditions of FCSRT 

with an AUC= 0.73 (CI= 0.55-0.85) and RFR with an AUC= 0.74 (CI= 0.57-0.86). 

Insufficient sample size in the biomarker positive and negative groups precludes 

ROC analysis. 

3.3.6. A posteriori hypothesis 

A manual approach to categorising retrieval failures and swap errors was 

undertaken to test the prediction that MCI patients will exhibit such errors more 

frequently than HCs. Two raters manually assessed all object replacement trials 

Figure 3.7. Receiver Operating Characteristic plot. Accuracy of object-location 
task performance for classifying total MCI from HCs. Absolute distance error (solid 
red line) and the percentage of hits was used for object recognition (solid purple line) 
and object-context association (sold green line). Classification of reference cognitive 
tests are represented by dashed lines for comparison: Addenbrookes Cognitive 
Examination-Revised (grey), Trail Making Test B (green), 4 Mountains Test (yellow), 
Free and Cued Selective Reminding Test – delayed free recall (blue) and Rey Figure 
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for the error source as outlined above. High inter-rater reliability was observed 

across all measurements with an overall agreement of 91.45% and an S score 

(Bennett et al., 1954) of 0.89 (1= perfect agreement).  

Group differences in the number of trials where the returned object was closer to 

its target location than to a different object’s location (i.e. nearest neighbour) were 

examined. Between YCs and HCs, a significant difference was observed, with YCs 

(24.06%) exhibiting fewer ‘non-target’ trials than HCs (30.56%, Figure 3.8A, odds 

ratio (object-recognition) = 0.71, p<0.05). A significant difference was also 

observed between HCs and MCI patients, with MCI patients exhibiting more ‘non-

target’ errors (45.57%) than HCs (object-recognition= 0.54, p<0.001). However, 

no significant difference in ‘off-target’ trials was seen between MCI+ (43.52%) and 

MCI- (36.9%, object-recognition = 0.75, p>0.05). Interestingly the frequency of any 

swap error (misattribution + content swap errors) significantly differed between 

HCs and MCI (Figure 3.8B, t(1,559)= 2.95, p<0.01), but not between MCI+ and MCI- 

(t(1,187)= 1.11, p>0.05). However, no difference in the frequencies of retrieval 

Figure 3.8. Distribution of swap errors. A) Proportion of trials when the 
location of a returned object is closest to its veridical location (target) or 
another object’s veridical location (non-target). B) Frequency of any swap 
error by group (misattribution or content) C) Within group errors, defined in 
section methodology, “other” constitute trials when a decision about the 
error cannot be reliably made, usually owing to the similar angle or close 
distance between two objects.   

A) 

 

B) 

 

C) 
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failures, misattribution errors or content swap errors was observed between HCs 

and MCI (p>0.05) or MCI+ and MCI- (p>0.05, Figure 3.8C).  

 

Finally, swap errors category was entered as an additional covariate to the GLME 

models previously described to evaluate whether there inclusion explains 

variance in performance associated with MCI. It was found that the inclusion of 

swap increased model fit (LRStat = 320.65, p=0) and were highly significant 

predictors of absolute distance error (F(5,539)= 124.2, p<0.001), with retrieval 

failures, misattribution swap errors and content-swap errors being associated 

with an increase in absolute distance errors of 77±10, 42±9m 62±11cm, 

respectively. Importantly, however MCI still explained a unique proportion of the 

variance in absolute distance errors (t(1,539)=2.88, p<0.01), although the   

proportion of variance associated with diagnosis was reduced (difference in t = 

1.35).  
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3.4 Discussion  

This study demonstrated that performance on a novel immersive virtual reality 

(iVR) object-location task (OLT), designed to explicitly test the function of the 

alEC, PC and hippocampus, and is impaired in MCI. In line with the study 

hypothesis, performance on the object-replacement subtask successfully 

differentiated MCI from HCs with greater accuracy than comparator gold standard 

global and domain-specific cognitive tests. However, no group differences were 

observed in either object recognition or object-environment association memory, 

suggesting that the deficit was selective to object-position memory, rather than 

whole task. Finally, contrary to the study hypothesis, no effect of ageing or 

underlying pathology (MCI- vs MCI+) was observed in any of the three iVR 

subtasks.   

 

The larger absolute distance errors observed in MCI compared to HCs are 

consistent with matrix-dependent location-learning (Bucks and Willison, 1997; 

Kessels et al., 2010a, b) and placing tests (Vacante et al., 2013) as well as  free 

recall object-location paradigms (Wang et al., 2013; Külzow et al., 2014; 

Hampstead et al., 2018). However contrary to the study hypothesis, no 

performance difference in object replacement was observed between young and 

healthy controls or between MCI patients with positive and negative AD 

biomarkers. This finding is unexpected given that categorical object-replacement 

tasks have shown efficacy in differentiating AD dementia from MCI patients 

(Bucks and Willison, 1997; Kessels et al., 2004, 2010b; Wang et al., 2013) and it 

was anticipated that errors would become more pronounced in a task with greater 

degrees of freedom. However, in line with the a posteriori hypothesis, swap errors 

were more frequent in MCI compared to HCs, indicative of an object-position 

binding deficit that that may be localised to EC dysfunction, specifically deficits in 

lEC object  and object-trace cells (Tsao et al., 2013) and mEC object-vector cells 

(Høydal et al., 2018) both of which require conjunctive representations of the 

object and its allocentric position. This notion that object-location processing is 

dependent on EC trace cells is reinforced by the observation of these cells in 

humans; in an object-location task these cells were shown to remap to the position 
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of a target object’s remembered position within the environment (Qasim et al 

(2018), submitted). However, swap errors did not fully explain the larger absolute 

distance errors observed in MCI indicating a deficit in spatial precision that is 

independent of the aforementioned binding impairment. Swap errors were highly 

predictive of object-replacement performance in line with prior research using a 

coordinate-dependent object replacement paradigm (Liang et al., 2016). However, 

unlike the present task, Liang et al (2016) demonstrated that the frequency of 

swap errors differentiated asymptomatic familial AD from HCs, and was 

negatively correlated with hippocampal volume. By comparison, in the present 

study patients with biomarker evidence of prodromal AD did not exhibit more 

swaps that MCI patients with negative AD biomarkers. 

 

Contrary to the study’s secondary hypothesis, no effect of ageing, MCI or 

prodromal AD was observed on object-recognition performance. This was 

surprising given the role of the PC and lEC in object-recognition (Murray and 

Richmond, 2001; Bellgowan et al., 2009; Berron et al., 2018b) and its reported 

deficits in MCI (Barbeau et al., 2004; Dudas et al., 2005; Bennett et al., 2006) as 

well as mild AD dementia (Hudon et al., 2006; Clark et al., 2012). These results 

may be due to the limited quantity of stimuli, constrained by the number of items 

that could be viably tested during both object replacement and object-context 

association subtasks (approximately 20% of those used in other tasks, e.g. 

Barbeau et al., 2004; Bennett et al., 2006). However, despite the limited stimulus 

size and differences in the saliency and distinctiveness of the test and foil objects 

few participants exhibited floor or ceiling effects, the absence of effect in MCI may 

be explained by methodological limitations as outlined below. A group difference 

in response bias was observed in the object-recognition subtask whereby MCI 

patients were less likely to select ‘old’ responses than HCs. This finding contrasts 

with previous research that more liberal response biases (i.e. more likely to select 

‘old’ responses) in patients with MCI and AD dementia compared to HCs (Gomar 

et al., 2017; Russo et al., 2017); an effect that appears to be invariant of the 

quantity or type of stimulus (Beth et al., 2010). Given these findings an explanation 

for the opposite bias in the present data is not posited, but note that any such 
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differences in response bias should not confound the d’ measure of sensitivity 

(accuracy), which did not differ between groups. 

  

No between group differences were observed in object-environment association 

accuracy. This finding is contrary to the study hypothesis and previous studies 

which demonstrated impaired object-environment association memory in MCI, 

with moderate differentiation of MCI and mild AD dementia (Wang et al., 2013). 

The present study’s results are particularly surprising given the demonstrated 

role of the lEC in object-environment association recognition (Wilson et al., 

2013a) and the deficits in hippocampal-dependent associative encoding in MCI 

and AD dementia (Sperling et al., 2003; Atienza et al., 2011; Hanseeuw et al., 

2011). Object-environment association memory was consistently more accurate 

in the third environment than either the first or second environment, which were 

equivalent. This finding is partly explained by a recency effect (better memory for 

more recent experiences), as observed in other object-environment association 

paradigms (Tam et al., 2015), and partly by the heightened saliency of 

environmental cues in environment 3 anecdotally reported by participants. 

Future research would benefit from avoiding such distinctive environments and 

the repetition of object stimuli in alternative forced choice paradigms. 

 

Performance on a brief object-replacement subtask successfully differentiated 

MCI from HCs and was more sensitive and specific for the detection of MCI than 

both global and domain-specific cognitive tests. Importantly, the iVR paradigm 

differentiated MCI from controls with higher classification accuracy than what 

was previously reported in study’s employing 2D object-replacement paradigms 

(Wang et al., 2013; Hampstead et al., 2018). While few object replacement 

paradigms using coordinate-dependent free recall have been assessed in 

prodromal AD, these results are in line with 2D visual short-term memory 

experiments in familial AD patients. Compared to controls, symptomatic and 

asymptomatic carriers were impaired in object replacement accuracy, but no 

difference was observed between asymptomatic and symptomatic carriers (Liang 

et al., 2016). However, both the object-recognition and object-environment 
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association subtasks were less accurate at classifying MCI compared to all tests on 

the neuropsychological test battery. In the present study, insufficient sample size 

prohibited examining the classification accuracy of MCI with positive CSF AD 

biomarkers (i.e. prodromal AD) from MCI with negative CSF AD biomarkers. 

However, there was no significant effect of CSF status on performance across all 

components of the OLT, classification accuracy is not likely to be much better than 

chance.  

 

The present study has several limitations. As a whole, the memory load required 

for retaining the instructions and format of the OLT is large, prohibiting the use of 

a greater quantity of stimuli in patients with cognitive impairment. However, 

despite the inherent complexity of the OLT, no floor effects were observed in 

object recognition/object-environment association subtasks (as were observed 

during piloting with larger number of objects and environments). The design of 

the experiment could be improved by counterbalancing environment order: this 

would clarify whether the performance advantage of environment 3 is driven by 

the saliency of environment-specific cues, or was the manifestation of practice 

effects during object-replacement and recency effects for object-context 

associations (Tam et al., 2015). Furthermore, the discontinuity of objects between 

participants presents a similar confound, given that the strength of the association 

is likely to be influenced by the salience and congruency of the object and 

environment (for example comments like “the pizza will be frozen” – comment 

made by a participant when viewing the ‘pizza’ object in the third snowy 

environment). Indeed, both stimulus and schema congruency have a significant 

effect on memory, although whether this confers an advantage or disadvantage 

remains controversial (Buuren et al., 2014; Greve et al., 2017, 2019; Frank et al., 

2018), this is particularly problematic given that patients with mild AD dementia 

attend more to incongruent stimulus pairings (Lenoble & Corveleyn, 2018). Lastly, 

the limited stimulus size driven by the format of the OLT reduces the power of 

these findings and interpretation of the data; each component of the OLT 

represents an interesting investigative question and warrants its own dedicated 

task. Despite these limitations, the present study demonstrated the viability of 
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implementing a novel multicomponent OLT using 3D iVR. Unlike 2D tasks, iVR 

enables encoding of both objects and environmental cues in 3D that elicits greater 

recruitment of lEC object and object-traces cells compared to 2D objects 

(Hargreaves et al., 2005; Deshmukh and Knierim, 2011; Yoganarasimha et al., 

2011). Future research should seek to resolve these design limitations and 

additionally incorporate a stepwise systematic increase in either objects or 

environments. Increasing task difficulty until a maximal performance threshold is 

reached would add a capacitive outcome measure that may improve classification 

of prodromal AD (Kessels et al., 2010a) and have greater utility in detecting subtle 

impairments in preclinical AD.  

 

In conclusion, this is the first study to utilise a multicomponent iVR object-location 

task in MCI patients with and without CSF evidence of Alzheimer’s pathology. It 

was found that performance on a coordinate-based object replacement task 

differentiates patients with mild cognitive impairment from aged-matched 

healthy controls with high sensitivity and specificity. However, performance on 

the object-replacement task did not differentiate MCI patients with CSF biomarker 

evidence of AD pathology from those without. No effect of MCI or prodromal AD 

was observed in either object recognition or object-environment association 

accuracy, and no effect of ageing was found in any of the three iVR tasks. The 

conclusions of the present study are confounded by the small number of stimuli 

and environments that were not counterbalanced or consistent between 

participants which should be resolved in any future research using this paradigm.  
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Chapter 4 MRI measures of Entorhinal Cortex structure 

and their relationship to spatial cognition 
 

4.1. Introduction 

The EC exhibits significant atrophy in AD dementia (Juottonen et al., 1998), in MCI 

patients smaller e volumes are predictive of disease severity and subsequent 

conversion to AD dementia (Dickerson et al., 2001) with greater specificity than 

hippocampal atrophy (Killiany et al., 2002; DeToledo-Morrell et al., 2004; 

Pennanen et al., 2004; Devanand et al., 2007, 2012). EC atrophy is also more 

predictive of memory decline, and more resistant to age-related degeneration 

than the hippocampus (Raz et al., 2004). However, the EC’s superior diagnostic 

differentiation is limited by the morphological heterogeneity of the 

parahippocampal gyrus and its sulci which vary in both quantity (i.e. bifurcation) 

and depth (Insausti et al., 1998) reducing the reliability of current automated 

approaches (Leng et al., 2019). Moreover, current automated approaches do not 

delineate the functionally disparate role of EC subdivisions. Manual segmentation 

of EC thickness, volumetry and diffeomorphometry overcomes these challenges 

with demonstrably high reliability, sensitivity and specificity as a biomarker for 

AD dementia (Tward et al., 2017a; Kulason et al., 2019). Krumm et al (2016) 

manually segmented the parahippocampal gyrus in patients with MCI and early 

AD dementia demonstrating atrophy in the EC and medial bank of the collateral 

sulcus (Brodmann’s area 35 (BA35)). This area encompasses the transentorhinal 

cortex, an area primarily affected by tau pathology, thought to be involved in the 

formation of complex associations pertaining to identity, semantics and object-

location (Jo and Lee, 2010; Watson et al., 2012; Eradath et al., 2015) and is densely 

connected with the EC.  

 

Given the EC’s role as the cortical gateway to the hippocampus and the impaired 

connectivity associated with EC atrophy in both MCI and early AD dementia (Li et 

al., 2002; Wang et al., 2006; Allen et al., 2007) there is increasing interest in 

mnemonic discrimination fMRI tasks that probe the distinct functions of EC 

subdivisions (Schultz et al., 2012; Reagh and Yassa, 2014; Navarro Schröder et al., 
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2015). Recently, reduced activity in object discrimination tasks associated with 

activity in alEC-PC networks was observed in older adults (Ryan et al., 2012; 

Berron et al., 2018b). These findings mirror previous research that found age-

related deficits in the detection of changes in object identity (Reagh et al., 2016) 

and pattern separation associated with alEC activity (Reagh et al.,  2017). 

Importantly, reduced alEC volumetry was predictive of cognitive performance 

both of which were impaired in ‘at-risk’ older adults, defined by below-average 

scores on the Montreal Cognitive Assessment (MoCA) without subject cognitive 

complaint (Olsen et al., 2017). The regional vulnerability of the EC has even been 

demonstrated in preclinical AD, Khan et al (2014) found hypometabolism and 

reduced cerebral blood volume in the lEC, PC and transentorhinal cortex of 

asymptomatic individuals who subsequently converted to AD dementia at 3.5-

year follow-up. These results were mirrored in transgenic AD mice that 

overexpressing both human amyloid and tau in the EC which induced 

hypometabolism in the lEC and posterior parietal cortex, key nodes of the 

posteromedial network. The aforementioned studies suggest that the detection of 

alEC impairments may be sensitive to tau-related neurodegeneration given its 

dense connectivity with the transentorhinal cortex, these impairments may be 

detectable using targeted imaging biomarkers.  

 

To date object and scene discrimination tasks, used respectively to represent 

functions of the alEC and pmEC, have focused on age-related cognitive decline and 

have not been fully explored in patients with MCI or early AD dementia. However, 

preliminary evidence demonstrate an intriguing relationship between the 

deposition of tau and performance in mnemonic discrimination tasks. Berron et al 

(2017, poster) found that in a complex object-in-scene task, object discrimination 

was predicted by CSF tau whereas scene discrimination was more associated with 

CSF amyloid in patients with subjective cognitive impairment and MCI. These 

results were echoed in healthy older adults where object-discrimination 

performance was associated with CSF phosphorylated tau levels a biomarker of 

preclinical AD (Berron et al., 2018a, poster). Lastly, object discrimination 

performance, but not scene discrimination, was associated with tau deposition in 

the medial temporal lobe of older adults, whereas amyloid deposition was not 
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associated with either task (Maass et al., 2018a, in press). These studies provide 

initial evidence that impaired mnemonic discrimination of objects and scenes as 

respective functions of the alEC and pmEC may be sensitive to the presence of tau 

pathology. Taken together, these studies raise the possibility that the 

spatiotemporal propagation of AD pathology within the EC occurs with a lateral to 

medial gradient. Therefore the detection of incipient AD may therefore be aided 

by object discrimination tasks that are associated with alEC structure (Olsen et al., 

2017) and function (Berron et al., 2018b). However, given the extensive evidence 

for the role of the alEC and pmEC in object-location and path integration it is of 

considerable interest to delineate the neural correlates of the work outlined in 

chapters 2 and 3.  

 

 The present study seeks to investigate EC structure-function associations in MCI 

and prodromal AD, via manual segmentation of the EC, including alEC and pmEC 

subdivisions, and BA35, containing the transentorhinal cortex.   

 

This study’s primary objective is to test the hypothesis that impairments in path 

integration and object-location correlate respectively with reductions in pmEC 

and alEC volume in MCI and early AD dementia. It is predicted that pmEC volumes 

will be associated with absolute distance errors in the path integration task (PIT), 

whereas performance in the object-replacement task (OLT) will correlate with 

alEC volumes. With regard to the OLT subtests, it is predicted that performance on 

the object recognition subtask will correlate with both alEC and BA35 volumes 

whereas object-environment memory will correlate with alEC volume. 

Additionally, it is predicted that PI and OLT performance will be associated with 

the parahippocampal gyrus and hippocampus in a whole-brain, voxel-based 

morphormetry (VBM) analysis. It is further anticipated that alEC and BA35 

atrophy occur in a stepdown manner from HCs to MCI to AD dementia, and will be 

more sensitive and specific to the presence of AD pathology than other regions of 

interest. Lastly, this study will evaluate whether the high classification accuracy of 

both iVR tasks can be improved by the addition of pmEC and alEC volumes. 
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4.2. Methods  

4.2.1. Participants  

Structural and morphometric differences were compared between two 

participants groupings i) HCs (n=34), MCI (n=54) and AD dementia (n=15) and ii) 

MCI+ (n=12) and MCI- (n=14). AD dementia was diagnosed accordingly to the 

McKhann criteria (McKhann et al., 2011); mild dementia was determined by Mini-

Mental State Examination scores >22 and a Clinical Dementia Rating of one 

(Morris, 1997). Details of the diagnostic, inclusion and exclusion criteria for MCI, 

MCI+ and MCI-are detailed in 2.2.1, abbreviations are consistent with previous 

chapters.  

 

4.2.2. MRI acquisition parameters: 

MRI scanning was conducted on 32 channel Siemens 3T Prisma scanners based 

either at the MRC Cognition and Brain Sciences Unit, Cambridge, or the Wolfson 

Brain Imaging Centre, Cambridge, with the same acquisition parameters used at 

the two scan sites. The volumetric scan protocol included whole brain 1mm 

isotropic T1-weighted MPRAGE (TA 5:12, TR 2300ms, TE 2.96ms) and high-

resolution 0.4x0.4x2 mm T2-weighted scans through the hippocampal formation 

with scans aligned orthogonally to the long axis of the hippocampus (TA 8.11, TR 

8020ms, TE 50ms).  

 

4.2.3. Voxel-based morphometry preprocessing  

T1 scans were manually inspected and reoriented to Montreal Neurological 

Institute (MNI) space if required. Whole brain voxel based morphometry was 

conducted using Matlab 2016a and computational anatomy toolbox (CAT12, 

(Gaser and Kurth, 2016). Images were registered to the MNI template ahead of 

undergoing modulated segmentation into grey matter, white matter and CSF, 

thereby conserving the volumes of the original image. Normalised segmented data 

were visually inspected for segmentation errors and checked for inhomogeneities 

and outliers. Data were smoothed using an 8mm kernel before model estimation.  
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4.2.4. Manual Segmentation of the Parahippocampal gyrus 

Segmentation of BA35, whole EC, anterolateral EC (alEC), posteromedial EC 

(pmEC) and subdivisions was undertaken. While segmentation protocols are 

available at ultrahigh-resolution 7T (Maass et al, 2015), the delineation of 

boundaries using 3T (Olsen et al., 2017; Yeung et al., 2017, 2018) is incomplete in 

intermediate slices that do not exclusively contain alEC or pmEC. Therefore, for 

this study, an in-house protocol was devised, which partially segmented alEC and 

pmEC using the three anterior-most and three posterior-most slices of the EC that 

contained exclusively alEC or pmEC (Maass et al., 2015). Intermediate slices were 

not used for alEC and pmEC segmentation owing to the overlap of the two 

subdivisions within this part of the EC and the absence of consistent landmarks to 

reliably delineate the progressive boundary between alEC and pmEC. As such, this 

protocol prioritised specificity of segmentation over completeness. Manual 

segmentation was performed in ITK-SNAP (Yushkevich et al, 2006) (Figure 4.1).   

 

The EC, alEC, pmEC and BA35 were manually segmented on coronal slices of high 

resolution T2-weighted 3T MRI scans, as summarized in Figure 4.1. The partial 

segmentation of alEC began two slices anterior to appearance of the hippocampal 

head and subiculum extending to the first slice of the subiculum. pmEC 

segmentation extended one slice anterior from, to one slice posterior to, the 

emergence of the incisura temporalis and the separation of the uncus from the 

medial temporal lobe. The medial extent of the anterior EC was the semiannular 

sulcus of the ambiens gyrus, whereas more posteriorly borders the medial 

subiculum. The complete segmentation of the EC and BA35 was adapted from the 

protocol outlined in Berron et al (2017) that aims to accommodate the anatomical 

variability of the collateral sulcus in this region (Ding and van Hoesen, 2015). The 

lateral border of the EC extends ¼ of the depth of the collateral sulcus (CS), unless 

it is < 4mm deep in which case it extends to the fundus of the CS. The segmentation 

of BA35 is dependent upon the type and depth of the CS, the lateral extent of BA35 

extends from the lateral extent of the EC to: 

 

• Very deep CS (>10mm): ¾ the depth of the medial CS bank 

• Deep CS (7-10mm): the fundus of the CS. 
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• Shallow (4-7mm): ½ the depth of the lateral CS bank. 

• Very shallow: the crown of the fusiform gyrus.  

 

Given the involvement of brain areas in PI (e.g retrosplenial cortex (RSc) Worsley 

et al, 2001; Chrastil et al, 2015) and OLT (e.g. hippocampus, Parslow et al (2004a, 

b, 2005)) that were not included in this  manual segmentation protocol, these 

additional regions of interest (ROIs) were segmented using the Destrieux atlas in 

Freesurfer 6.0 (Fischl et al, 2002; Iglesias et al, 2015).  

 

Figure 4.1. Illustration of entorhinal subdivisions and BA35 segmentation. 
Anterolateral (alEC, green) is segmented two slices anterior to the emergence of 
the hippocampal head (slice 3). Posteromedial (pmEC, pink) is segmented from 
one slice anterior to, and one slice posterior from, the uncal apex (slice 13). All 
intermediate slices between alEC and pmEC are segmented as EC (brown), total 
EC volume is produced by summing all 3 EC subdivision volumes. BA35 is 
segmented on all slices as the EC and one additional slice posterior to the end of 
the pmEC. Arrow schematic indicates anatomical plane for 3D segmentation only.  
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All segmentations were manually inspected to exclude cysts, CSF and meninges.  

The residual method was used to adjust ROI volumes:  

𝐴𝐴𝑅𝑅𝑀𝑀𝑖𝑖 = 𝐴𝐴𝑅𝑅𝑀𝑀𝑖𝑖  − 𝛽𝛽(𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖 −  𝑀𝑀𝑀𝑀𝐷𝐷𝐻𝐻𝐻𝐻_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

This approach uses linear regression to remove all variation in ROI volume with 

intracranial volume (ICV) and is less sensitive to errors in ICV than other methods 

(Andreasen et al., 1993; Barnes et al., 2010). HCs was used to remove all ‘normal’ 

variance of the ROI associated with ICV (Voevodskaya et al., 2014; Jack, 1989). 

Volumetric measurements were summed across hemispheres after ICV 

correction.  

 

Lastly, intra-rater reliability was assessed over two raters; Johanna Hagman and I, 10 

randomly selected scans were re-segmented following a delay of at least one month 

from initial segmentation. Inter-rater reliability was assessed for both raters by 

segmenting 5 randomly selected images from the other rater. Intra- and inter-rater 

reliability was assessed using spatial overlap as measured using Convert3D’s Dice 

similarity coefficient (Yushkevich et al., 2006). Whereas consistency in volume was 

assessed using intraclass correlation coefficient (ICC) for intra- (ICC (3,k) -

consistency) and inter-rater (ICC(2,k) -agreement) reliability (McGraw and Wong, 

1996).   

 

4.2.5. Statistics 

Between group differences in demographics were assessed using one-way 

ANOVAs with between group contrasts (HC vs MCI, HC vs AD and MCI vs AD), 

whereas two-sample t-tests were used to assess differences between MCI+ and 

MCI-. Where parametric assumptions were violated the Kruskal-Wallis or 

Wilcoxon rank sum test was used in place of ANOVA or t-test. Associations 

between VBM and performance in either the PIT or OLT were assessed using 

multiple linear regressions. Separate models examined the effect of absolute 

distance error (averaged per participant) for both PIT and object replacement 

across HCs v MCI and MCI+ and MCI-. Additional models examined grey matter 

(GM) correlates of proportional linear and proportional angular error from the 
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PIT along with percentage correct in the object recognition and object-

environment subtasks of the OLT. All variables were mean centered and checked 

for orthogonality, with voxel values restricted to an absolute threshold of 0.1 prior 

to contrasts being defined. F-contrasts were used to specify the iVR outcome 

measure of interest covarying for ICV, age, sex, years in education and diagnostic 

status. Significant voxel clusters are primarily reported using an FWE correction 

threshold of p<0.05, in the case that no voxels were significant at this threshold, 

an exploratory uncorrected threshold of p<0.001. Post statistical thresholding, 

cluster size (extent threshold) was set to a non-arbitrary value as determined 

using the cp_cluster_Pthresh tool (https://goo.gl/kjVydz).  

 

Between-group differences in ROI volume were assessed using multiple 

regression with the response variable specified as the ROI and group (HC vs MCI 

vs AD) specified as the predictor variable along with covariates of age, sex and 

years in education. Contrasts were used to examine specific between group 

differences (e.g. HC vs MCI, HC vs AD, MCI vs AD). Separate models were used to 

examine between group structural differences in the ROI of MCI+ and MCI-.  

 

One-way MANCOVA was used to examine the effect of ROIs on iVR performance 

covarying for group, age, sex and years in education across all participants.  For 

the path integration task, dependent variables were specified as the three 

response variables (absolute distance error, proportional linear and proportional 

angular error). The final model included whole EC, pmEC, isthmus cingulate and 

hippocampal volumes as mean centred predictor variables. For the OLT, response 

variables were specified as absolute distance errors in the object replacement task 

along with percentage correctly identified in both the object recognition and 

object-context association. Predictor variables included whole EC, alEC, 

hippocampal and BA35 volumes which were mean centred.  

 

All models covaried for age, sex and years in education and were inspected for 

multicollinearity between predictor variables, with residuals visually inspected 

for normal distribution and homoscedasticity.  
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 Healthy 

Controls (HC) 
Mild Cognitive Impairment (MCI) 

Alzheimer’s 

Disease 

   Total MCI MCI- MCI+  

Be
tw

ee
n 

Gr
ou

p 

n 30 54 9 12 15 

Age 68.3 ±6.5 68.2 ±7.8 70.18 ±7.8 72.1 ±10 74.4 ±9.8 

Males 43.3 % 69.2% 72.7 % 66.7 % 46.6% 

Year in 

Education 
14.1 ±3 13.5 ±3.3 14.5 ±4.4 14.5 ±3.8 11.2 ±1.5 

ACER 97.1 ±2.8 76.5 ±13.1* 85.3 ±8.2 81.3 ±10.8* 72.3 ±11.1* 

PI
T 

n 37 34 9 12  

Age 68.8 ±6.39 70.2 ±10.2 70.18 ±7.8 72.1 ±10  

Sex 44.4 % 67.6 % 72.7 % 66.7 %  

Years in 

Education 
14.8 ±3.6 14.2 ±3.3 14.5 ±4.4 14.5 ±3.8  

ACER 97.1 ±2.9 80.2 ±11.2* 85.3 ±8.2 81.3 ±10.8*  

OL
T 

n 24 21 7 9  

Age 68.9 ±4.4 70 ±9.1 67.4 ±6.3 69.7 ±10.1  

Sex 52.9 % 65 % 71.4 % 71.4 %  

Years in 

Education 
15.1 ±2.9 14.4 ±3.6 14.1±4.4 14.5 ±3.4  

ACER 97.2 ±2.8 82.8 ±9.8* 86.1 ±8.6 79.9 ±11.8  

Table 4.1 Demographic table summary for VBM and manual segmentation 
analyses. Analyses examined the differences in VBM and manual segmentation of the 
parahippocampal gyrus between groups and their association with PIT and OLT 
performance.  *Indicates a difference from HCs at p<0.01. 
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4.3. Results 

4.3.1. Demographic differences  

Across the three cohorts (Between group, PIT and OLT), no significant difference 

in age or sex (p>0.05) was observed. The Kruskal-Wallis test (non-normal data) 

revealed that patients with AD dementia had significant fewer years in education 

than MCI patients (χ2(2,96)= 16.86, p<0.01) but not HCs (p>0.05). A significant 

difference in ACER was observed between HCs and MCI, and between HCs and AD 

dementia (χ2(2,96)= 55.0, p<0.01). No significant differences were observed 

between MCI+ and MCI- groups.  

 

4.3.2. Reliability of segmentation protocol 

High inter- and intra- rater reliability was achieved for the manual segmentation 

protocol of the EC, alEC and pmEC, consistent with previous research (Berron et 

al., 2017b; Olsen et al., 2017). Inter-rater reliability on the whole was lower than 

intra-rater reliability but exhibited moderate to good consistency (Koo and Li, 

2016). Intraclass correlation coefficient (ICC) gives an indication of quantitative 

consistency whereas dice coefficients reveal the proportion of spatial overlap 

between segmentations (ICC of 1 = complete agreement in volumetric estimates, 

Dice of 1 = perfect overlap between segmentations). 

 EC alEC pmEC BA35 

 LHS RHS LHS RHS LHS RHS LHS RHS 

Intra-rater 
reliability 

*ICC 0.93 0.82 0.88 0.89 0.85 0.77 0.89 0.75 

Dice 0.87 0.87 0.89 0.82 0.88 0.85 0.84 0.81 

Inter-rater 
reliability 

ICC 0.98 0.94 0.92 0.98 0.91 0.70 0.79 0.70 

Dice 0.70 0.71 0.75 0.73 0.71 0.69 0.77 0.73 

Table 4.2 Dice similarity coefficient was computed for both intra- and 
inter-rater reliability. ICC(3k) and ICC(2k) was used for intra-rater and 
inter-rater reliability, respectively. Abbreviations: EC, entorhinal cortex; ICC 
intraclass coefficient; *ICC – averaged across both raters. 
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4.3.3. Between group differences in volumetry and morphormetry  

Between group differences in EC subdivision volumetry were examined across 

HCs, total MCI and AD patients, as well as MCI+ and MCI-. Across HCs, MCI and AD 

participants, a main effect of group was observed on EC (F(2,101)= 20.77,  

p<0.001), alEC  (F(2,101)= 14.82, p<0.001), pmEC (F(2,101)=10.78, p<0.01) and 

BA35 (F(2,101)=20.70, p<0.001). Post hoc contrasts examined volumetric 

differences between HCs and AD, HCs and MCI and MCI and AD (table 3). Between 

HCs and AD, and between HCs and MCI, differences were observed across all 

manually segmented volumes, whereas differences between MCI and AD were 

only observed in total EC volume.  Significant differences between MCI+ and MCI- 

were observed in bilateral alEC (t(1,20)= 2.30, p<0.05), pmEC (t(1,20)=2.36, 

p<0.05) and total EC (t(1,20)= 2.29, p<0.05), however, none of these contrasts 

survived control for multiple comparisons.  

Figure 4.2. Between group differences in ROI volumes ** p<0.01, ***p<0.0001 
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VBM analysis was used to examine the differential patterning of gray matter (GM) 

voxel values between HCs, MCI and AD. A one-way ANCOVA, adjusted for age, sex, 

years in education and ICV was performed, and between-group t-tests revealed 

differences in GM voxel values between AD and HCs in the bilateral hippocampus 

(BA54), left parahippocampal gyrus (BA 36), left putamen (BA49) and left 

supramarginal gyrus (BA40, all cluster level FWE p<0.05, table 4.4).  

  

Contrasts EC alEC pmEC BA35 

HC vs AD t= 6.30, p<0.001* t = 5.23, p<0.001* t = 4.56, p<0.001* t = 4.56, p<0.001* 
HC vs MCI t=5.36, p<0.001* t = 4.68, p<0.001* t = 3.79, p<0.01* t = 3.79, p<0.01* 
MCI vs AD t= 3.31, p<0.01* t = 2.55, p<0.05 t = 2.50, p<0.05 t = 2.50, p>0.05 
Table 4.3. Between group differences across EC, alEC, pmEC and BA35 as assessed by post 
hoc contrasts. * Indicate comparisons that survived control for multiple comparison correction 
(adjusted alpha = 0.01). 

Figure 4.3. Between group differences in ROI volumes across MCI+ and 
MCI-, all comparisons were significant at p<0.05 but did not survive control for 
multiple comparisons. 
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Between HCs and MCI differences in GM were only observed in the left middle 

temporal gyrus (cluster level FWE p<0.05). Whilst no differences between MCI 

and AD were observed at cluster level FWE p<0.05, an exploratory p<0.001 

revealed differences localised to the left putamen.  

 

VBM analysis across all participants revealed no association between GM and PIT 

performance using a cluster FWE p<0.05. Using an exploratory uncorrected 

statistical threshold of p<0.001 across HCs and MCI revealed correlations between 

absolute distance errors and GM values in the left thalamus. Neither proportional 

linear and proportional angular error were associated with any GM values.  
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Comparison Anatomical location (BA) MNI coordinates Cluster size t/F Stat Z Values 

  X Y Z    
Between group differences         

HC vs AD        
 L Hippocampus (BA 54)* -32 -9 -14 608 6.55 5.92 
 L Putamen (BA49)* -26 18 3 368 6.35 5.77 
 L Supramarginal gyrus (BA40)* 40 -48 46 123 5.56 5.15 
 L Parahippocampal gyrus (BA36)* -34 -10 -33 99 5.56 5.15 
 R Hippocampus (BA54)* 27 -12 -9 426 5.54 5.14 

HC vs MCI        
 L Middle temporal gyrus (BA21)* -45 -15 -10 235 5.61 5.19 

MCI vs AD        
 L Putamen (BA49) -27 14 -6 1479 4.29 4.09 
Path Integration         

Absolute Distance Error       
 L Thalamus -6 -15 2 1327 17.98 3.8 
Object Location        

Object Recognition % correct         
 L Hippocampus (BA 54) -32 -20 -14 1496 25.64 4.26 
 L  Parahippocampal gyrus (BA36) -32 -16 -24    

Table 4.4 VBM differences between groups and associated with PIT and OLT performance. Anatomical locations with * indicate 
cluster significance at FWE p<0.05, all other anatomical locations were significant at uncorrected cluster threshold of p<0.001, with an 
extent size determined by p<0.01. 
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4.3.4. Association between ROI volumetry and path integration performance 

Multivariate analysis between PIT performance measures and ROIs (pmEC, EC, 

isthmus cingulate and hippocampus) covarying for age, sex, years in education 

and group revealed that, across all participants, pmEC volume was the only 

significant predictor of PIT performance (Pillai’s Trace (PT)= 0.13, F(3,58)= 2.83, 

p<0.05). Reduced pmEC volumes were associated with larger absolute distance 

errors (t(1,60)= -2.96, p<0.01, R2=0.47), while hippocampal volume showed a 

trend toward an association with absolute distance errors (t(1,60)=-2.29, p<0.05, 

R2=0.47) but did not survive multiple comparison correction. No ROI volume was 

predictive of either proportional linear or proportional angular errors. The results 

for PIT distance error are summarised in table 4.4 and Figure 4.4.  

Figure 4.4. Association between path integration outcome measures and 
regions of interest (ROIs) Bilateral posteromedial entorhinal cortex (A, C, E) 
and hippocampus (B, D, F) volumes are displayed on the x-axis against absolute 
distance errors (A, B), proportional linear errors (C, D) and proportional 
angular errors (E, F) on the y-axis. Least square lines are across all participants. 
 

A) 

 

A) 

B) 

C) D) 

E) F) 
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Table 4.5. Univariate statistics summary of ROIs and PIT/OLT performance. 

Path integration task performance 

 Absolute Distance error  Proportional Angular Error  Proportional Linear Error 

 β SE t p  β SE t p  β SE t p 

Entorhinal Cortex 0.07 0.14 0.55 0.58  0.05 0.04 1.17 0.25  -0.01 0.04 -0.27 0.79 

Posteromedial EC -0.32 0.11 -2.96 0.004  -0.06 0.03 -1.92 0.06  0.07 0.04 2.00 0.06 

Isthmus cingulate 0.09 0.08 1.24 0.22  0.04 0.02 1.86 0.07  -0.01 0.02 -0.31 0.76 

Hippocampus -0.24 0.11 -2.29 0.03  -0.06 0.03 -1.96 0.06  0.01 0.03 0.27 0.79 

 F(8,60) = 3.71, p<0.01, R2= 0.47  F(8,60) = 3.71, p<0.01, R2 = 0.33  F(8,60) = 1.86, p>0.05, R2=0.19 

Object Location Task Performance 

 Object Replacement Subtask  Object Recognition Subtask  Object-Context Subtask 

 β SE t p  β SE t p  β SE t p 

Entorhinal Cortex 0.20 0.16 1.28 0.21  -0.09 0.05 -1.86 0.07  -0.16 0.07 -2.10 0.04 

Anterolateral EC -0.25 0.13 -1.94 0.06   0.06   0.04 1.53 0.13  0.23 0.06 3.63 <0.001 

BA35 0.04 0.08 0.42 0.68  -0.02 0.03 -0.83 0.41  -0.07 0.04 -1.80 0.08 

Hippocampus -0.06 0.07 -0.80 0.46  0.41 0.02 3.94 <0.001  -0.02 0.03 -0.62 0.54 

 F(8,34) = 5.26, p<0.001, R2= 0.55  F(8,34) = 2.87, p<0.05, R2 = 0.40  F(8,34) = 3.53, p<0.01, R2 = 0.45 

Multiple regression models were used to identify which ROI was associated with which outcome measure/subtask following 
multivariate regression. Emboldened p values were significant predictors of the given outcome measure.  
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4.3.5. Association between ROI volumetry and object-location task 

performance 

Multivariate analysis examined the relationship between ROIs (alEC, 

hippocampus and BA35) and OLT performance (absolute distance error in object 

replacement and percentage correct in object recognition and object-context 

association subtasks) across all participants. It was found that OLT performance 

was predicted by alEC (PT=0.31, F(3,33)=4.86, p<0.05) and hippocampal 

(PT=0.33, F(3,33)=5.35, p<0.01) volumes. The results for absolute distance error 

are shown in table 4.4 and Figure 4.6. No volume was associated with absolute 

distance errors across the object replacement subtask. Larger hippocampal 

volumes (t(1,34)= 3.94, p<0.001, R2= 0.4) were predictive of more correct 

responses in the object recognition subtask, whereas the proportion of correct 

responses in the object-environment association subtask was predicted by larger 

alEC (t(1,34)=3.63, p<0.01, R2= 0.45). 

 

VBM analysis revealed that, at FWE p<0.05 threshold, object recognition 

performance (% correct) was correlated with GM voxel values in the left 

hippocampus and left parahippocampal gyrus. However, neither absolute 

distance errors in the object replacement subtask nor percentage correct in the 

Figure 4.5. Grey matter regions associated with iVR performance. Regions of grey 
matter associated with absolute distance errors in the path integration task (A) and 
percentage of correct responses in the object recognition subtask of the OLT (B) using 
an uncorrected threshold of p<0.001. 

A) B) 
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object-context associations were predictive of any changes in GM at either a 

corrected FWE threshold of p<0.05 or uncorrected threshold of p<0.001. 

 

4.3.6. Classification Accuracy 

The classification accuracy of ROI volumes for differentiating MCI and AD from 

HCs, AD from MCI and MCI+ from MCI- was assessed using a linear discriminant 

analysis with 10 fold cross validation and bootstrapped with 1000 replicates, with 

results summarised in table 4.6. It was found that the most sensitive and specific 

classifiers of AD pathology were total EC and BA35 volume, exhibiting perfect 

differentiation of AD from HCs (AUC=1, confidence interval (CI): 1-1). BA35 

volume differentiated AD from MCI patients with the highest accuracy (AUC= 0.88 

Figure 4.6. Associations between object location performance and regions of 
interest (ROIs) across all participants (raw data).  Absolute distance errors (A, 
B) were not associated with either alEC (A) or hippocampal volumes (B), whereas 
the percentage correct in the object recognition task (C, D) was associated with 
hippocampal volume (D) but not with alEC volume (C). Correct object-environment 
associations were associated with both alEC (E) and BA35 volumes (F).  
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CI: 0.76-0.94), whereas the best classifiers of MCI+ from MCI- groups were pmEC 

volume (AUC= 0.60, CI=0.34-0.8) and BA35 volume (AUC= 0.60, CI=0.37-0.83) 

though neither performed much better than chance. 

Performance on the iVR tasks was combined with volumetric MRI measures to 

assess whether this improved the classification of MCI from HCs (Figure 4.7). Not 

all participants had MRI scans available, so the sample sizes and classifications 

presented differ from those outlined in chapters 2 and 3. For the path integration 

task, a marginal improvement in the classification of MCI from HCs on the basis of 

absolute distance errors (AUC= 0.76 CI: 0.62-0.86) was observed with the addition 

of pmEC (AUC= 0.79, CI: 0.65, 0.88) and hippocampal volumes (AUC=0.79, CI: 

0.65-0.88), and this marginal increase in classification accuracy (0.03) related to 

proportional linear (AUC increase = 0.05) and proportional angular errors (AUC 

increase = 0.03). For the OLT, the addition of alEC volumes marginally decreased 

the classification accuracy of detecting MCI from absolute distance errors in the 

object-replacement subtask (baseline: AUC= 0.86, full AUC= 0.84 CI: 0.61-0.93). 

However, compared to baseline, the addition of alEC volumes significantly 

improved the classification accuracy of both object recognition (baseline: AUC= 

0.51, full AUC= 0.79 CI: 0.63-0.9) and object-context association memory (baseline 

AUC= 0.61, full AUC= 0.80, CI: 0.63-0.93). The effect of combining volumetric 

measurements with iVR performance to the classification of MCI+ from MCI- could 

not be evaluated owing to the small sample size; models were unstable and cross-

validation could not be performed. 

Classifier MCI vs HCs MCI+ vs MCI- AD vs HC AD vs MCI 

 AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec 
EC 0.88 0.83 0.74 0.59 0.83 0.62 1 1 1 0.81 0.20 1 
pmEC 0.81 0.61 1 0.60 0.75 0.62 0.99 0.93 0.97 0.79 0.47 0.94 
alEC 0.84 0.87 0.66 0.55 0.67 0.69 0.99 0.87 0.97 0.81 0.40 0.98 
Hippocampus 0.77 0.67 0.84 0.56 0.62 0.68 0.95 0.80 0.95 0.75 0.40 0.96 
BA35 0.86 0.94 0.66 0.60 0.50 0.85 1 1 1 0.88 0.40 0.96 
Table 4.6. Classification accuracy of regions of interest across group. Abbreviations = AUC 
= Area under the receiver operating characteristic curve, Sens = Sensitivity, Spec = specificity. 
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Figure 4.7. Receiver operating characteristic (ROC) curve for iVR tasks 
combined with ROI volumetry. A) Classification accuracy of absolute distance 
errors in the path integration task with and without ROIs (pmEC and 
hippocampus) of MCI versus HCs (positive class = MCI).  B) Classification 
accuracy of absolute distance errors with and without ROIs (pmEC and 
hippocampus) for absolute distance errors in the object replacement subtask 
and correct percentage in object-recognition and object-environment 
association subtasks.  
 

A) B

 



 111 

4.4. Discussion 

This study provides support for the functional specialisation of entorhinal cortex 

subdivisions and its impairment in MCI and early AD dementia. In line with the 

existing literature, MCI and AD dementia patients had reduced volumes in all 

manually segmented regions of interest (ROI) including both EC subdivisions 

(alEC and pmEC), total EC and BA35. EC volumes exhibited high classification 

accuracy for differentiating MCI (AUC=0.88) and AD dementia (AUC=1) from HCs, 

whereas BA35 volumes were highly accurate in differentiating AD dementia from 

MCI patients (AUC= 0.88). Reduced volumes across all ROIs were observed in MCI 

patients with AD positive biomarkers (MCI+), compared to MCI patients with AD 

negative biomarkers (MCI-), however these did not survive planned comparisons 

and did not differentiate prodromal AD with a high degree of accuracy (best 

classifier was BA35 (AUC= 0.6)). In line with the primary study hypothesis, path 

integration performance was strongly predicted by pmEC volumes across all 

participants, although VBM analyses indicated that left thalamic GM was most 

predictive of path integration errors across the whole brain. Performance in the 

OLT was predicted by alEC volumes, although no association was observed 

between alEC volumes and object-replacement accuracy. However larger 

hippocampal and alEC volumes were associated with object-context association 

and object recognition memory, respectively. Taken together these study findings 

provides support for the notion that path integration and object-specific spatial 

processing are dependent on the pmEC and alEC respectively, and that 

performance on each task is related to the degree of atrophy in each ROI. 

 

The present study found atrophy of the EC and BA35 in patients with MCI and AD 

dementia, in line with previous research (Juottonen et al., 1998; Killiany et al., 

2002; Pennanen et al., 2004; Devanand et al., 2007, 2012). In line with the study 

hypothesis both alEC and pmEC volumes were sequentially smaller from HCs to 

MCI to AD dementia. These findings may have relevance in developing imaging 

biomarker measures sensitive to the cortical spread of tau pathology ahead of 

significant cognitive decline (Olsen et al., 2017). In contrast to the pattern of 

degeneration anticipated by Braak staging (Braak and Braak, 1991, 1995), BA35 

(encompassing the transentorhinal cortex) was not significantly more atrophied 
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than other ROIs in MCI+ patients, consistent with other research (Krumm et al., 

2016), although other studies demonstrated a pronounced difference (Tward et 

al., 2017b; Kulason et al., 2019). It is possible that these discrepant findings reflect 

differences in measurement methodologies relating to the anatomical 

heterogeneity of this brain region and the lack of any harmonised segmentation 

protocol for BA35 (e.g. (Krimer et al., 1997; Insausti et al., 1998; Augustinack et 

al., 2013; Berron et al., 2017b). However, the possibility that BA35 volume may be 

a marker of early AD is reinforced by recent research employing the Krimer et al 

(1997) segmentation protocol at 11T which found greater changes in the 

thickness of the transentorhinal cortex than in the mEC in prodromal AD patients 

compared with HCs (Kulason et al., 2019). In the present study the partial 

segmentation protocol revealed approximately equal volume loss across the alEC 

and pmEC. However given the variance associated with the volumetric 

measurements and the heterogeneity of MCI this is evidence is not sufficient to 

reject the hypothesised anterolateral-posteromedial atrophic patterning 

postulated in predementia AD. Nevertheless this finding is surprising given that 

metabolic deficits in the lEC are highly predictive of conversion to AD dementia in 

asymptomatic individuals (Khan et al., 2013), however the rate and patterning of 

atrophy may be more apparent in the pre-MCI stages of AD as symptomatic 

patients are likely to have significant atrophy at clinical presentation (Braak and 

Del Tredici, 2015). Lastly, VBM analysis revealed substantial grey matter atrophy 

in the left parahippocampal gyrus, supramarginal gyrus, putamen and bilateral 

hippocampus of AD patients compared to controls in line with previous research 

(Grignon et al., 1998; Hirata et al., 2005; de Jong et al., 2008; Yang et al., 2012).  

 

Consistent with the study hypothesis, pmEC volumes were negatively associated 

with absolute distance errors in the path integration task, contrasting with the 

lack of association with the hippocampus, total EC and isthmus cingulate, as a 

proxy of the retrosplenial cortex (RSc), all of which didn’t survive multiple 

comparisons. To the author’s knowledge, this is the first demonstration that 

reduced pmEC volumes are associated with impaired path integration in humans, 

and is consistent with previous research demonstrating a negative association 

between EC thickness and path integration errors in MCI and AD dementia 
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patients (Mokrisova et al., 2016). Importantly, these findings reinforce previous 

work that the EC is critically involved in PI analogous to the rodent mEC 

(McNaughton et al., 2006; Knierim et al., 2014), and that PI in prodromal AD is 

primarily related to pmEC dysfunction. The trend toward a negative correlation 

between hippocampal volume and absolute distance errors is consistent with the 

higher level spatial processes of the hippocampus (Wolbers et al., 2007) and the 

deficits observed in temporal lobectomy patients (Worsley et al., 2001). 

Interestingly, VBM analyses revealed an association with absolute distance errors 

and grey matter voxel values in the right anterior thalamus. Along with the EC and 

subiculum, the thalamus contains a high density of head-direction cells (Taube, 

1995) that encode horizontal head movements in humans (Kim and Maguire, 

2018) that are integral to accurate path integration (Frohardt et al., 2006; Valerio 

and Taube, 2012). This novel finding may reflect the cognitive impairments 

associated with thalamic degeneration in MCI (Pedro et al., 2012; Yi et al., 2016) 

or the spatial disorientation specific to AD dementia (Aggleton et al., 2016). 

However, a more targeted approach to examining these findings is required given 

the disparate functions of thalamic nuclei and their later degeneration in the 

pathogenesis of AD (Braak staging (iv - v)).  

 

Performance across all subtasks of the OLT were predicted by bilateral alEC and 

hippocampal volumes. To the author’s knowledge, this is the first report that alEC 

volumes were associated with an iVR object-location task in humans, and is line 

with the study’s hypothesis and the role of the lEC as a convergent point of 

anterotemporal networks (Ranganath and Ritchey, 2012). The lEC is postulated to 

bind object-specific spatial and non-spatial information (Deshmukh and Knierim, 

2011; Tsao et al., 2013) as demonstrated by lesion studies (Keene et al., 2016), 

that indicate that alEC function extends beyond object discrimination. Given the 

hippocampus’ postulated role as a binding site of object, spatial and temporal 

information the observation that hippocampal volumes were predictive of OLT 

performance has face validity. However contrary to the study hypothesis, 

performance in the object replacement subtask was not associated with alEC 

volumes or any other ROIs, although a non-significant trend in alEC volume was 

observed. This is surprising given that previous research demonstrated that EC 
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volumes are associated with object-replacement accuracy in a continuous-

measure object replacement task across HCs and MCI (Hampstead et al., 2018).  

 

The finding that object-environment memory was predicted by alEC volumes 

supports the notion that the lEC is critical for the integration of event ‘content’ 

(Knierim et al., 2014) and corroborates impairments in the formation of complex 

object-environment associations and object-orientated spatial processing 

induced by lEC lesions (Hunsaker and Kesner, 2013; Wilson et al., 2013b; 

Kuruvilla and Ainge, 2017b). The present study found no association between 

object-environment association memory (Charles et al., 2004; Jo and Lee, 2010; 

Watson et al., 2012; Wilson et al., 2013b) and BA35 volumes, however the role of 

BA35 may be more important in short-term and working memory tasks 

(Bellgowan et al., 2006; Buffalo et al., 2006; Watson et al., 2012) and less relevant 

to tasks with longer delays. The positive association between object recognition 

memory and hippocampal volumes coincides with the deficits induced by 

hippocampal lesions (Broadbent et al., 2004; Fortin et al., 2004) especially in tasks 

requiring a longer delay (Cohen and Stackman, 2015). However the role of the 

hippocampus in recognition memory  is increasingly understood to depend on the 

qualia and binding demands of the stimuli (see Bird (2017) for review) with a 

number of studies demonstrating no effect of hippocampal lesions on object 

recognition (Bussey et al., 2000a; Winters et al., 2004; Good et al., 2007; Langston 

and Wood, 2010) suggesting such representations are processed upstream of the 

hippocampus in BA35/perirhinal cortex (Xiang and Brown, 1998; Bussey et al., 

2000b; Norman and Eacott, 2004; Winters et al., 2004; Bussey and Saksida, 2005). 

It may be that object recognition becomes dependent on the hippocampus when 

temporal order or spatial context is important (Agster et al., 2002; Fortin et al., 

2002; Barker and Warburton, 2011b). Given that the OLT required conjunctive 

object x position x environment encoding, these findings support the central role 

of the hippocampus in complex object recognition memory (Mayes et al., 2002; 

Yonelinas et al., 2019) and particularly the right hemisphere (Kessels et al., 2002; 

Postma et al., 2008). Although contrary to the study hypothesis and the findings 

of other object-discrimination tasks (Schultz et al., 2012; Reagh and Yassa, 2014; 

Reagh et al., 2017, 2018; Berron et al., 2018b), alEC volumes were not predictive 
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of object recognition memory performance. Collectively, these findings support 

the role of the alEC in object-oriented spatial binding that is not explained by BA35 

or hippocampal volume and is impaired in response to alEC atrophy. Whilst the 

present study was restricted by its sample size, future research should examine 

the role of the effect of alEC atrophy and impaired functional connectivity on 

object-spatial binding that has demonstrable sensitivity to AD pathology in older 

adults (Olsen et al., 2017; Berron et al., 2018a; Hampstead et al., 2018; Maass et 

al., 2018a, b). 

 

The classification accuracy of the EC, its subdivisions and BA35 volumes were 

assessed in their ability to differentiate both MCI and AD dementia from HCs, as 

well as MCI from AD dementia patients. It was found that all manually segmented 

ROIs demonstrated near perfect classification of AD dementia from HCs, 

outperforming automated segmentation of the hippocampus. The volume of all 

ROIs were less accurate in classifying AD dementia from MCI patients, although 

BA35 atrophy encompassing the transentorhinal cortex (Braak stage I), was 

highly sensitive and specific for AD (AUC= 0.88) in line with previous research 

(Krumm et al., 2016). As such BA35 volumes may aid in the detection of AD 

predementia and potentially pre-mci (Figure 4.3D). The manual segmentation of 

BA35 conferred a marginal benefit in classifying heterogeneous MCI from HCs in 

line with previous research (Kulason et al., 2019). Whilst the small sample sizes of 

the MCI+ and MCI- groups prevented reliable assessment of the ROI’s 

classification accuracy, a trend toward group separation was observed (Figure 

4.3A-C), MCI+ patients exhibited more atrophy across all ROIs than MCI- but was 

most pronounced in the EC. The differentiation of prodromal AD based on 

EC/BA35 atrophy is likely to be more specific to underlying AD than whole brain 

(Hojjati et al., 2018) or hippocampal-based approaches (Miller et al., 2015; Long 

et al., 2017), both of which are affected by other neurodegenerative dementias. 

Conflicting with the study hypothesis, the addition of volumetric measurements 

to iVR task performance did not improve classification accuracy of either the PIT 

or OLT. One explanation for this is that both pmEC and alEC explain similar 

variance as PIT and OLT performance thereby restricting improvements in 

classification accuracy, though this needs to be examined in larger samples. In 
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contrast, the classification accuracy of both object recognition and object-

environment memory was significantly improved with the addition of alEC 

volumes, attributable to the poor classification accuracy of either subtask at 

baseline and the relatively high accuracy of ROI measures. Taken together, these 

results complement previous research showing that parahippocampal gyrus 

atrophy is sensitive and specific to AD. However the detection of structural 

changes may not be sufficiently sensitive to detect the cellular dysfunction 

occurring in incipient AD which may manifest as deficits in metabolism or 

functional connectivity within the EC’s disparate networks. Whilst the addition of 

alEC/pmEC volumes did not improve the classification accuracy of iVR 

performance in the present study, such measures may explain unique variance 

and thus aid in the detection of preclinical AD populations in future research.  

 

This main limitation of this study was the small sample of patients in each group. 

This confounds the precision of the analysis of the EC’s structure and function in 

prodromal AD as well as the classification analysis, both of which require 

replication in larger datasets. As such the classifications reported here require 

replication with larger sample sizes. The manual segmentation protocol exhibited 

very high inter- and intra-rater reliability, and was conducted blinded where 

possible, however manual segmentation in clinical populations could be biased by 

observable ventricular expansion/cortical degeneration. Whilst the partial 

segmentation protocol of alEC and pmEC was predictive of OLT and PIT 

performance respectively, these results would be improved by applying a 

complete segmentation protocol for these subdivisions, but this is complicated by 

the absence of reliable landmarks marking the progressive al/pm EC boundary. 

Manual segmentation of EC subdivision volumes more labour-intensive than 

automated approaches and is reliant on high-resolution imaging that is highly 

susceptible to motion artefacts. Finally VBM analysis, an approach that is not 

without criticism (see Bookstein (2001) but also Ashburner and Friston (2001)) 

enabled a hypothesis-free approach to assessing between group differences in 

macroscopic tissue morphometry and relating such differences to performance on 

iVR tasks. This approach revealed brain regions that were not part of the a priori 



 117 

ROIs for this study, for example thalamic nuclei in PIT, and warrant further 

investigation with their own targeted approach.  

 

In conclusion, this study demonstrated that the EC, its subdivisions and BA35 

volumes are sensitive and specific for differentiating MCI and AD dementia 

patients from HCs but their sensitivity and specificity for prodromal AD could not 

be sufficiently evaluated with the limited sample size. Atrophy in the 

posteromedial EC was associated with deficits in path integration, whereas 

anterolateral EC and hippocampal atrophy were predictive of performance across 

object-location subtasks. Specifically, smaller hippocampal and anterolateral EC 

volumes were predictive of impaired object recognition and object-context 

memory, respectively, whereas no ROI predicted object replacement accuracy. 

This work supports the claims that the iVR tasks outlined in chapters two and 

three are dependent on the disparate functions of EC subdivisions and that greater 

volume loss is associated with worse performance in both tasks. 
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Chapter 5 Discussion  
 

The aim of this study was to test the hypothesis that tests based on the functions 

of the entorhinal cortex (EC) may aid in the detection of early Alzheimer’s disease 

(AD). Immersive virtual reality tests were used to examine performance in path 

integration (PIT) and object location (OLT), as respective functions of the 

posteromedial and anterolateral EC, with the association between task 

performance and the volumetry of each EC subdivision additionally evaluated. 

Consistent with the postulated roles of EC subdivisions in navigation and object-

oriented processing, larger performance errors across the PIT and OLT were 

associated with smaller pmEC and alEC volumes, respectively.  MCI patients were 

impaired in both the PIT and OLT compared to healthy controls, performance on 

each of these tasks outperformed comparator cognitive tests in the classification 

of MCI. Critically, the PIT differentiated MCI patients at increased risk of 

developing AD dementia with greater sensitivity and specificity than gold 

standard neuropsychological tests currently used in clinical and research practice.  

 

This work indicates that tests based around theories of EC function have potential 

diagnostic value for the detection of MCI and prodromal AD. The spatial tasks used 

in this study were not only better classifiers of prodromal AD (PIT) and MCI (OLT) 

than ‘traditional’ neuropsychological tests but fulfil the unmet need for more 

ecologically valid cognitive assessments in patient screening and as potential 

outcome measures in prospective clinical trials (see Harvey et al (2017) for 

review). Path integration and object location are phylogenetically conserved 

behaviours that can be operationalised to causatively evaluate the effect of 

pathology on cell physiology with direct application to behaviour. The mechanistic 

insight offered by such an approach has important implications for resolving the 

current discontinuity in outcome measures between preclinical animal and 

human clinical trials.  Immersive virtual reality systems (iVR) are a candidate 

modality for such translational research given their increasing use in spatial tasks 

across both animals (Thurley and Ayaz, 2016; see Tennant et al (2018) or 

Minderer et al (2016) for reviews) and humans (Diersch and Wolbers, 2019).  This 
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work therefore adds to the growing literature that demonstrates the diagnostic 

value of spatial cognitive tasks, this is of particular importance given that spatial 

behaviours may be overlooked in the clinical assessment of early AD (Coughlan. 

et al., 2018). This cross-sectional work should therefore be considered 

preliminary and requires replication in larger cohorts across cultures before 

robust recommendations for clinical practice can be made. 

 

This work is not without limitations. The samples used in all experiments were 

small and not representative of the population as a whole. On average participants 

spent more years in education and had higher socioeconomic status than is 

representative of their demographic, this limits the generalisation of these results 

as patients may have higher ‘cognitive reserve’ than would be representative 

(Cabeza et al., 2018). The application of iVR enabled experimental manipulations 

that would not otherwise be experimentally viable, for example real world 

movement, 3D environments and control of local/global environmental cues was 

crucial for both tasks. However, whilst iVR accommodated these prerequisites and 

controlled problematic confounding variables, it also created other unforeseen 

difficulties such as the exclusion of frail or disabled participants. The development 

of desktop versions of these tasks would overcome such exclusions and have 

greater scalability as a clinical tool, furthermore this would permit the 

examination of the neural correlates of these tasks using fMRI. Such an approach 

is further supported by the mounting evidence indicating that spatial cells are 

recruited in spatial tasks even in the absence of active movement (Kunz et al., 

2015; Qasim et al., 2018; Stangl et al., 2018a). Indeed non-iVR spatial tests based 

around the function of the EC have demonstrated sensitivity to the presence of 

abnormal AD biomarkers (Kunz et al., 2015; Moodley et al., 2015; Allison et al., 

2016; Berron et al., 2018a; Maass et al., 2018a). However these practical 

limitations of iVR may be resolved with the next generation of VR technologies, a 

prediction that is reflected in the increasing integration of VR devices into the 

research milieu (Diersch and Wolbers, 2019; Clay et al (in preparation)) including: 

‘gamified’ epidemiology of spatial cognition (Sea Hero quest; Coutrot et al., 2019), 

cognitive training (Doniger et al., 2018), ‘daily living’ tasks (Seo et al., 2017), 

quality of life enrichment (Hodge et al., 2018), and public engagement 
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(https://www.awalkthroughdementia.org/, Alzheimer’s Research UK). However 

iVR may be superseded with the advent of augmented reality offering similar 

advantages without the limitations of iVR equipment (Vovk et al., 2019) and has 

already demonstrated value in understanding the calibration of path integration 

in rodents  (Jayakumar et al., 2019). 

 

This work provides evidence and proof of concept for the utility of the spatial-

clinical approach, future research should therefore seek to preserve and extend 

such translational research. Such an approach will aid our understanding of the 

effect of pathology on cell physiology and its manifestation in cognitive and 

behavioural impairments that may manifest in the very earliest stages of AD. 

Going forwards, the PIT will be evaluated in a longitudinal study examining 

individuals at high risk of dementia (PREVENT, Ritchie and Ritchie (2012)), 

performance will be related to both EC atrophy (7T MRI) and the topographical 

distribution of pathology (aβ/tau PET). This on-going research will serve as the 

litmus test for the PIT’s sensitivity to the presence of preclinical AD in 

asymptomatic individuals. 

 

This thesis sought to examine the function and structure of the entorhinal cortex 

(EC) in mild cognitive impairment. Immersive virtual reality tasks based around 

the disparate function of the EC’s subdivisions demonstrated considerable value 

in aiding the detection of MCI and prodromal AD above ‘gold standard’ 

neuropsychological tests. Performance in the PIT and OLT was related to the 

posteromedial and anterolateral EC, these findings support the central role of the 

EC in spatial cognition that are compromised in cognitive impairment. The 

findings presented here have implications not just for early diagnosis but also for 

translational AD research aimed at understanding mechanistic links between 

impaired cell activity and behaviour in AD. The tasks used in this study, combined 

with analogous navigation tasks in animal models of AD, would help address the 

need for outcome measures capable of comparing treatment effects across 

preclinical and clinical phases of future treatment trials aimed at delaying or 

preventing the onset of dementia. 

  

https://www.awalkthroughdementia.org/
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