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Why education is linked to higher cognitive function in aging is fiercely 
debated. Leading theories propose that education reduces brain decline in 
aging and enhances tolerance to brain pathology or that it does not affect 
cognitive decline but, rather, reflects higher early-life cognitive function. 
To test these theories, we analyzed 407,356 episodic memory scores from 
170,795 participants older than 50 years, alongside 15,157 brain magnetic 
resonance imaging scans from 6,472 participants across 33 Western 
countries. More education was associated with better memory, larger 
intracranial volume and slightly larger volume of memory-sensitive brain 
regions. However, education did not protect against age-related decline 
or weakened effects of brain decline on cognition. The most parsimonious 
explanation for the results is that the associations reflect factors present 
early in life, including propensity of individuals with certain traits to pursue 
more education. Although education has numerous benefits, the notion that 
it provides protection against cognitive or brain decline is not supported.

Although the total number of people with dementia will increase sub-
stantially due to population growth and aging1, the incidence seems to 
be declining2,3, and older adults have better cognitive function today 
than 20 years ago4. One hypothesis is that this reflects broad societal 
and individual lifestyle changes and that dementia incidence can be 
further reduced by promoting these1,5. Education has repeatedly been 
suggested to be one such potential protective factor6,7, in line with 
observations of robust associations between education and higher 
cognitive function in aging as well as declines in dementia incidence 

with increasing population educational attainment8,9. However, results 
thus far are heterogeneous and point in different directions, and the 
specific mechanisms that could explain such a causal link are widely 
debated10. We, therefore, suggest addressing these questions by con-
ducting a large mega-analysis of longitudinal brain and cognitive stud-
ies covering a wider geographical distribution of samples.

Education could result in better cognition in aging by contribut-
ing to a lower rate of age-normative brain decline11—that is, ‘brain main-
tenance’—which has been associated with better episodic memory12. 
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to see selection effects, in the sense that participants with specific 
traits, especially higher cognitive function, are more likely to pursue 
further education. It is also relevant to examine whether re-test effect—
the tendency for performance to increase as a function of previous 
tests taken—is exaggerated with higher education. If more education 
yields cognitive reserve, this may manifest as a greater ability to take 
advantage of previous testing experience and to develop more efficient 
test-taking strategies.

A major challenge in addressing these questions is that large, 
representative and heterogeneous longitudinal samples with suf-
ficient statistical power are needed. The geographic coverage is criti-
cal, because relationships may vary across time31 and societies32,33.  
For example, the population attributable fraction (PAF) of dementia 
due to low education varied from 1.7% in Argentina to 10.8% in Bolivia  
in a study of seven Latin American countries34. We compiled data from 
33 countries across Europe, the United States and Israel, including a 
total of 407,356 memory tests from 170,795 participants with up to 
seven follow-up sessions (Fig. 1a), ensuring that the results are not 
confined to one specific time and place. Still, because the samples come 
from Western, Educated, Industrialized, Rich, Democratic (WEIRD) 
countries, we compare the results to patterns from non-WEIRD socie-
ties in Africa, Latin America and East and South Asia35.

Episodic memory is a unique memory system36 that can be defined 
as the ability to recall information tied to a specific time or place, in 
contrast to semantic memory, which is recall of general knowledge and 
facts37. In research and clinical assessments of memory function, epi-
sodic memory is typically measured as the amount of newly acquired 
information that can later be explicitly recalled, such as the number 
of words remembered from a presented list. We focus on episodic 
memory because it is a particularly age-sensitive long-term memory 
system38, and we assess it using a verbal recall test, one of the most 
employed methods.

To address brain mechanisms, we analyzed 15,157 brain magnetic 
resonance imaging (MRI) scans and concurrent memory tests from 
6,472 participants across seven countries (Fig. 1b). Brain decline was 
defined as within-participant reductions over time in memory-sensitive 
brain regions. The primary data sources were the population-based 
multinational Survey of Health, Ageing and Retirement in Europe 
(SHARE) (https://share-eric.eu/)39 and the Lifebrain consortium40 
(https://www.lifebrain.uio.no/), enriched with legacy databases. 
For sample representativity, SHARE uses the best available sample 
frame resources in each country to achieve full probability sampling, 
including access to population registers. The MRI populations vary 

Studies have reported that older adults with higher education have 
less brain pathology13, less brain decline in presymptomatic dementia14 
and less accumulation of cerebrovascular lesions15. However, a recent 
longitudinal study investigating two independent samples did not find 
different rates of change in hippocampus and age-sensitive regions of 
the cerebral cortex in more educated participants16. Alternatively, edu-
cation could make people more resilient to underlying brain pathol-
ogy—that is, yielding higher ‘cognitive reserve’17. According to this 
theory, education leads to more efficient processing of cognitive tasks, 
which, in turn, allows for higher performance despite age-normative 
levels of brain decline18. Although a popular theory5,19, a longitudinal 
study found that education did not weaken the link between hip-
pocampal atrophy and memory change20. Both the maintenance 
and the reserve accounts of education imply that education causally 
influences late-life cognition by reducing or postponing age-related 
decline. This is controversial, however, because even though educa-
tion is associated with better cognitive function among older adults, 
it is not clear that more educated persons show less cognitive decline 
when measured longitudinally21,22.

An alternative perspective holds that the association between 
education and cognitive performance is persistent across the adult 
lifespan. This contrasts with the more aging-centered views pre-
sented above. Under this alternative view, if education has a positive 
causal effect on cognition in aging, it would be by permanently boost-
ing cognitive function earlier in life, causing persistent differences 
between educational groups. Increased compulsory schooling has 
been shown to elevate scores on tests of memory23–25, intelligence26,27 
and general cognition28, with effects detectable decades later29. This 
perspective could also be consistent with a lack of causal effects 
of education on cognitive function, however, as those with higher 
initial cognitive functioning would be expected to reach higher 
levels of education than their peers. Hence, the topic of the role of 
education in cognitive function and brain health in aging is riddled 
with controversies30.

Nonetheless, contrasting predictions can be derived from the 
different theories. If education improves memory in older age by shap-
ing brain aging, we expect better preservation of memory-sensitive 
brain regions among individuals with higher education. If education 
improves cognitive reserve, we expect more tolerance to brain pathol-
ogy, indexed by a lower correlation between brain decline and cogni-
tive decline. In contrast, if the education–memory–brain relationship 
reflects stable individual differences, education should not correlate 
with either memory or brain decline. In that case, we also would expect 
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Fig. 1 | Geographical and age distribution of samples. a, Total number of completed memory test sessions per country. b, Number of brain MRI scans per country. 
Maps were generated using the IMAGE Interactive map generator (https://gisco-services.ec.europa.eu/image/).
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in representativity, and, hence, we validate the memory results from 
SHARE in the MRI samples before conducting the brain analyses.

Results
SHARE cohort results
Episodic memory was assessed with a 10-word verbal recall test, with 
two conditions (immediate and 5-minute recall), using multiple ver-
sions across waves and participants41. Each condition was separately 
included in the statistical models, yielding two observations per 
timepoint per participant. Generalized linear models (GLMs) with a 
binomial link were run using memory score as dependent variable, 
with the interaction between education and time since baseline as the 
critical term, using test type (immediate or 5-minute delay), a mono-
tonic function of the number of previous tests taken (to control for 
re-test effects), education, self-reported sex, country, baseline age 
(smooth function), time since baseline and the age × time interaction 
as covariates. Individual-specific intercepts per participant were nested 
within country. z-transformed values for age and time were used in the 
model fitting and converted back to natural units when showing the 
results. Memory offset refers to the cross-sectional differences between 
groups—that is, main effect of education. Memory change was defined 
as change in memory over time within participants, with differences 
between education groups represented by the education × time interac-
tion. The main outputs of the statistical model were the odds ratios of 
remembering a word compared to a reference group. For readability, we 
used simplified terms for education categories, with definitions, SHARE 
categorization and mapping to the International Standard Classifica-
tion of Education (ISCED) presented in Supplementary Information.

Memory scores were lower with higher baseline age, showing 
slightly accelerating trajectories (smoothing parameter for the com-
bined sample = 45.8, confidence interval: 20.7–81.5). Figure 2a revealed 
a perfect ordering of higher scores with more education across age. ‘No 
education’ had an odds ratio of 0.54 (Cohen’s d = −0.33) compared to 
the reference category (‘High school’), whereas ‘Master’s’ had an odds 
ratio of 1.55 (Cohen’s d = 0.24) (Fig. 3a and Extended Data Table 1), 
yielding an odds ratio range of 1.01 and a Cohen’s d range of 0.57. This 
confirms the well-known positive association between education and 
episodic memory in aging and shows that the difference in memory 
score is almost identical with each increase in education category.

Re-test effects were substantial and, thus, essential to adjust 
for in analyses of change. Odds ratios increased almost linearly, 
from 1.5 compared to baseline at the first follow-up to 2.5 at the 
fifth follow-up (Fig. 2b). A small negative effect of time (1 year) 
was observed on memory scores (odds ratio = 0.963, confidence 
interval: 0.961–0.964), slightly increasing with age (age × time odds 
ratio = 0.9981, confidence interval: 0.9980–0.9982). These results 

show that test scores increase when participants are tested repeat-
edly but that scores become lower over time when this is accounted 
for. Testing whether higher education was associated with less mem-
ory decline (Fig. 3b and Extended Data Table 2), we found negligible 
effect sizes—all odds ratios less than 1.005—meaning that there were 
no meaningful differences. Furthermore, no systematic differences 
were observed in re-test effects between participants of different 
education levels (Fig. 2c). Although the immediate and delayed recall 
conditions were highly correlated (r = 0.74), the delayed condition 
was more difficult and likely to a larger extent reflected long-term 
memory. We repeated the analyses for each condition separately, 
yielding identical results (Supplementary Figs. 5 and 6).

The first set of analyses showed that education was linearly associ-
ated with better memory scores but not differences in memory decline 
or re-test effects. To test the hypothesis that the education–memory 
associations reflect selection effects, we re-ran the analyses using 
‘relative’ education as measure of interest. That is, for each participant, 
we calculated amount of education relative to the other participants 
from the same birth cohort, sex and country. This yielded a percentile 
score for each participant (0–100%), indexing amount of education 
relative to similar peers. This analysis provides a test of selection effects 
on education–memory associations—that is, that people with some 
unmeasured traits take more education—and this trait is correlated 
with late-life memory scores. Absolute level of education was used as 
covariate, as absolute and relative education would be correlated. By 
using relative education, we were able to partially account for these 
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selection effects that vary between men and women from different 
birth cohorts in countries with widely varying educational opportu-
nities and experiences. Birth cohort was measured in bins of a decade 
(1900–1909, 1910–1919, …, 1960–1969). The results showed that includ-
ing relative education in the model reduced the associations between 
absolute education and memory, whereas relative education showed an 
independent, positive association with memory. The effects were mod-
est, as moving from the lowest (0) to the highest (100) percentile was 
associated with an odds ratio of 1.17 (confidence interval: 1.14–1.20)/
Cohen’s d = 0.08 compared to the reference group (‘High school’) (Sup-
plementary Fig. 10). This suggests that selection effects explain some 
of the association between education and memory in aging.

Further support for selection effects would be if variables reflect-
ing individual differences in childhood, before or in the first years of 
schooling, could account for the associations later in life. We re-ran 
the analyses controlling for two proxies of earlier-life cognitive func-
tion—self-assessed mathematical and language skills at age 10 years—
as well as a proxy of ‘parents’ scholarly culture’42— number of books 
in the house at age 10 years. If this reduced the association between 
episodic memory scores and education, this would support the 
hypothesis of selection effects. The three childhood variables were 
all significant confounders of the association between education and 
memory score (math: estimate = 0.104, confidence interval: 0.099–
0.108; language: estimate = 0.118, confidence interval: 0.114–0.123; 
books: estimate = 0.083, confidence interval: 0.079–0.087). When 
controlling for them, the association was reduced: the odds ratio 
and Cohen’s d ranges from the original model were 1.01 (0.54–1.55) 

and 0.58 (−0.34 to 0.24), respectively, whereas the adjusted model 
ranges were odds ratio 0.60 (0.65–1.25) and Cohen’s d 0.36 (−0.24 
to 0.12). This shows that a part of the late-life association between 
education and memory score could be explained by self-reported 
childhood cognitive function and home environment. For the analy-
ses of intra-individual memory decline over time, controlling for each 
childhood variable further reduced the already minute associations 
with memory recall, rendering none of them statistically significant 
(full results in Supplementary Information).

Sensitivity analyses SHARE
To explore whether the results were specific to the verbal recall test, 
we first repeated the analyses for two additional tests from SHARE 
(Supplementary Information). ‘Numeric skill’ yields a measure of math-
ematical ability, and ‘orientation for time and place’ is a test sensitive to 
age-related cognitive decline. Similar to the verbal recall results, scores 
were perfectly ordered according to educational level for both tests 
(Fig. 4a–d), with effect sizes numerically slightly larger (orienting: odds 
ratio range = 1.0 (0.26–1.26), Cohen’s d range = 0.86 (−0.74 to 0.12); 
numeracy: odds ratio range = 1.48 (0.31–1.79), Cohen’s d range = 0.96 
(−0.64 to 0.32)). Age slopes were parallel, with minute education–
change associations: odds ratio range 0.982–1.007 for orientation 
and 0.982–1.002 for numeracy. Hence, the pattern of results for verbal 
recall generalizes to two other tests.

To explore whether the results could be replicated with a more 
comprehensive test battery, we analyzed the recently released com-
prehensive cognitive test protocol administered to a subsample of 
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participants at the latest wave of the survey (SHARE-HCAP (Harmo-
nized Cognitive Assessment Protocol); Supplementary Information). 
We screened out cognitive impairment and restricted the sample to 
participants older than 65 years, yielding 25 test scores from 1,380 par-
ticipants, including 11 memory scores. Due to the smaller sample, four 
education categories were used (primary or less n = 115, middle school 
n = 192, high school n = 608, vocational or university level n = 465). We 
used principal component analysis (PCA) to extract individual-level 
scores for four cognitive domains (episodic memory, executive func-
tion, language and verbal fluency and orientation). Associations 
between education and performance were monotonously positive for 
all domains (orientation Cohen’s d range (minimum, maximum) = 0.74 
(−0.29 to 0.45); episodic memory range = 1.22 (−0.54 to 0.68); execu-
tive range = 1.03 (−0.24 to 0.79); language range = 1.00 (−0.36 to 0.64) 
(Fig. 4e)). The age trajectories were close to parallel (Supplementary 
Information), except for more complex curves for the lowest education 
level, probably due to few participants in this group. This demonstrates 
that the main results for verbal recall are generalizable to other cogni-
tive tests and domains.

The data cover 33 countries in different continents but are 
restricted to WEIRD societies. To explore whether the results gener-
alized to non-WEIRD societies, we plotted the memory component 
score from SHARE-HCAP against memory scores from a recent HCAP 
study of 16,524 older participants (59–78 years) in three non-WEIRD 
countries (China, India and South Africa) and one partially WEIRD 
country (Mexico)35. In these studies, substantial efforts were devoted to 
validating HCAP across widely different cultures. Although education 
and mean scores differed greatly compared to SHARE42, with less than 
10% of participants from South Africa and China having high school 
education or more, associations were remarkably similar (Fig. 4f). In all 
non-WEIRD samples, there were monotonous, almost linear relation-
ships between education and higher memory scores, mimicking the 
SHARE-HCAP results. This suggests that the present cross-sectional 
education–memory associations are not restricted to WEIRD socie-
ties only.

Brain MRI cohort results
Thirteen datasets with longitudinal MRI, memory assessments and 
information about education were included from seven countries 
across the North to South of Europe, the United States and Canada 
(Fig. 1b). In addition to cohort-specific inclusion and exclusion criteria, 
all participants were older than 50 years without cognitive impairment 
or neurological or psychiatric disorders. The initial dataset included 
participants with 1–14 MRI acquisitions with follow-up intervals up to 
15.8 years and 1–24 memory assessments with follow-up intervals up 
to 28 years. Sample characteristics are presented in Extended Data 
Table 2, and cohort-specific descriptions are presented in Methods.

First, we tested whether the main cognitive results from SHARE 
replicated in the MRI cohorts. As education coding varied, we could 
not use the SHARE coding scheme, and education was, hence, dichoto-
mized based on the median split for each sample, with post hoc anal-
yses using ‘Higher education’ (education after high school) versus 
‘Secondary education’ (high school or lower) (‘replication analyses’).  
A generalized additive mixed model (GAMM)43 was run using mem-
ory (z-normalized based on the first observation per each dataset) 
as dependent variable, with education, time since baseline, sex and a 
dummy for re-test effects as fixed effects and baseline age as smooth 
term. Random intercepts were included per participant and dataset, 
and random slopes of re-test and time were included for each dataset. 
To test memory change, an education × time interaction term was 
added to the model.

Similar to the SHARE results, whereas high education was asso-
ciated with better memory scores (β = 0.33, s.e. = 0.009, P < 0.001, 
Cohen’s d = 0.63), the education groups showed close to parallel 
changes over time (Fig. 5d,e). Predicted change over 10 years was 

z = −0.20 for high education compared to z = −0.26 for low educa-
tion (effect of education group on memory z-score change per year: 
β = 0.006, s.e. = 0.003, P = 0.029, Cohen’s d = 0.01) (for complete 
results, see Supplementary Information). Similar results were seen 
when using the alternative education categorization. This confirmed 
that the main findings from SHARE were also seen for the memory tests 
in the brain MRI cohorts.

Next, we extracted a brain variable sensitive to memory change. 
For each participant, annual change in each of 166 brain regions 
was calculated and related to memory change by a series of linear 
mixed-effect models, yielding 29 false discovery rate (FDR)-corrected 
significant regions (Fig. 5a). These were entered into a PCA, yielding 
a memory-sensitive brain principal component (PC). This PC could 
then be used to test the specific hypothesis that high education has 
protective effects on brain change relevant for episodic memory and 
the prediction from the cognitive reserve theory that highly educated 
participants would experience less memory decline for a given level 
of brain decline.

To test the association between education and brain PC score 
(offset effects), a GAMM was run with education, time since baseline, 
sex and estimated total intracranial volume (eTIV) as fixed effects and 
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baseline age and sex × baseline age as smooth terms. Random inter-
cepts were included per participant, scanner and dataset, and random 
slopes of time were included for each dataset. The brain PC showed 
the expected negative relationship to age, slightly accelerating from 
about 70 years (Fig. 5b), and time (β = −0.07, s.e. = 0.008, P < 0.001). 
Estimated loss in the high education group was z = −0.68 over a decade 
compared to z = −0.74 for the low group (interaction effect of educa-
tion × time on brain volume: β = 0.005, s.e. = 0.002, P = 0.015, Cohen’s 
d = 0.024), yielding close to parallel change slopes (Fig. 5c). Hence, 
brain decline across memory-sensitive brain regions was very similar 
in the two education groups.

In contrast, high education was slightly positively associated with 
the brain PC (β = 0.04, s.e. = 0.02, P = 0.049, Cohen’s d = 0.17) and intrac-
ranial volume (β = 0.12, s.e. = 0.002, P < 0.001) (Fig. 6a). This means that 
participants with high education on average had slightly larger regional 
brain volumes, smaller ventricles and larger head size. The association 
with intracranial volume was numerically larger than the association 
with the brain PC. Intracranial volume is developed in childhood and 
undergoes minimal changes during school age, suggesting that this 
association reflects selection effects.

Finally, we tested whether the prediction from the cognitive 
reserve theory that the relationship between brain decline and mem-
ory decline is weaker in participants with higher education. First, a 
positive relationship was observed between the brain PC and episodic 
memory score (β = 0.073, s.e. = 0.013, P < 0.001). Because the brain 
PC was extracted from regions where brain change was related to 
memory change, the memory change–brain change relationship was 
given (β = 0.01, s.e. = 0.002). More importantly, no significant educa-
tion × brain PC (β = 0.01, s.e. = 0.02, P = 0.60) or education × brain 
PC × time (β = 0.004, s.e. = 0.004, P = 0.43) interactions were observed. 
This means that the relationship between brain and memory, and the 
relationship between brain changes and memory changes, did not vary 
as a function of education (Fig. 6b,c), contrary to the prediction from 
the cognitive reserve theory.

Replication analyses
The main analyses were run using the alternative categorization of edu-
cation (more/less than high school) and a different brain component 
derived using machine learning—that is, a regularized regression model 
(least absolute shrinkage and selection operator (LASSO)) used to pre-
dict memory based on an independent sample of 28,114 cross-sectional 
MRI scans from the UK Biobank, yielding four model specifications 
(Supplementary Table 8). Controlling for eTIV, cross-sectional educa-
tion–brain associations were relatively weak although significant at 
P < 0.05 in three models. The education × time interaction was signifi-
cant but with small effect sizes in the same three specifications. Effect 
size was largest for the PC brain measure and the high school categori-
zation, with an interaction coefficient of 0.008 compared to 0.005 for 

the two other significant specifications. The brain × education × time 
interaction on memory was not significant in any specification.

As an additional set of control analyses, we tested whether the 
coefficients for the brain variables in predicting memory were affected 
by including education in the models (Supplementary Fig. 11). The coef-
ficients changed only minimally, suggesting that the brain–memory 
relationships were largely independent of education.

Discussion
Education was only minimally associated with less age-related decline in 
episodic memory and rate of decline in memory-sensitive brain regions 
and did not increase resilience to the brain changes. The small mag-
nitude of differences in brain and memory change across education 
groups contrasts with the much larger differences in baseline levels, 
highlighting a distinction between lifelong cognitive advantages and 
age-related trajectories. Additionally, we found evidence that selection 
effects account for parts of the associations, meaning that people with 
certain traits, such as larger brain volumes and higher cognitive func-
tion from early age, were more likely to pursue higher education. This 
selection process likely varies across social and demographic contexts 
and educational systems. Nevertheless, clear patterns emerged across 
diverse samples spanning multiple WEIRD societies and age cohorts. 
The findings aligned with trends observed in non-WEIRD societies, 
suggesting a certain degree of robustness across populations and 
historical contexts.

A role for education in brain and cognitive aging?
The idea that higher education reduces age-related cognitive decline 
is based on two complementary hypotheses. The first suggests that 
education protects against memory decline by influencing lifestyle 
factors that help preserve memory-sensitive brain regions—that is, by 
promoting brain maintenance. We found that less brain atrophy was 
linked to better episodic memory12, yet differences in decline trajec-
tories of memory-sensitive brain regions across educational groups 
were minimal.

This aligns with and extends previous findings16 and provides a 
neurobiological explanation for why individuals with different edu-
cational attainment experience similar rates of age-related memory 
decline21,44. An implication is that behaviors associated with higher 
education may not be as protective against brain decline, as often 
assumed, because we would then expect accumulated effects over 
time, leading to diverging age trajectories and different rates of brain 
change between educational groups.

The second hypothesis proposes that education protects cognitive 
function by increasing resilience to brain decline, building a ‘cogni-
tive reserve’5,18,19. We found little support for this idea. Differences in 
aging trajectories for memory and memory-sensitive brain regions 
were minimal, and structural brain decline was associated with similar 
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amounts of memory decline across educational levels, aligning with 
previous research on hippocampal20 and cortical45 atrophy.

Additionally, more education was not linked to larger re-test 
effects, suggesting that higher education did not enhance the ability 
to benefit from test experience46. Re-test effects reflect the capacity 
to take advantage of previous testing to improve performance, and, 
although more educated individuals encoded new information more 
effectively—as reflected in their higher memory scores—this did not 
translate into greater gains from repeated testing. Similar findings have 
been reported for tests of mental speed and reasoning47.

Taken together, these results suggest that education does not 
reduce brain decline or episodic memory in aging. Instead, the 
observed associations likely reflect differences established earlier 
in life.

How do associations among brain volume, cognitive function 
and education arise?
The results revealed relationships among education, memory function, 
slightly larger volumes of memory-sensitive brain regions and larger 
intracranial volume. The most straightforward explanation is that 
individuals with higher cognitive abilities and larger brain volumes are 
more likely to pursue higher education48. Although participants faced 
unequal opportunities and barriers to education49, which may weaken 
the link between cognitive abilities and educational attainment, the 
findings suggest that selection may partly explain the associations:

First, consistent with selection effects, participants with higher 
education relative to their peers—matched by sex, birth cohort and 
country—had better memory function decades later even when 
accounting for absolute education.

Second, controlling for proxies of childhood cognitive function 
and ‘scholarly culture’50 attenuated the association between education 
and memory performance. Earlier-life cognitive function predicts 
cognitive ability and brain health in aging51,52, limiting opportunities 
for causal effects of education beyond adolescence. This conclusion 
aligns with a systematic review of the effects of education on dementia 
risk, which suggested that low education is more strongly associated 
with dementia when it reflects cognitive capacity rather than privilege 
and when linked to other risk factors across the lifespan53.

Third, larger intracranial volume confounded the education–
memory relationship. Intracranial volume, a proxy for lifetime maxi-
mum brain size54, is often considered a measure of ‘brain reserve’ and 
is linked to better cognitive function in aging, even after accounting 
for brain pathology55. Because intracranial volume is fully developed 
before adolescence, it is unlikely to be directly influenced by education.

Taken together, these findings suggest that earlier-life factors 
contribute to the lifelong associations between education and cogni-
tion. Still, these observations do not preclude the possibility of causal 
effects. Cognitive training can lead to improvements in memory and 
brain structure, even in older adults56–58, and early education could 
similarly contribute to increased brain volumes of the magnitude 
observed here. Because part of the relationship between cognition and 
education can be explained by neuroanatomical differences from early 
childhood33, brain structure may serve as a phenotype in the causal 
pathway linking genetic variation to differences in cognitive function 
and educational attainment59.

However, training-induced effects on brain structure tend to be 
more transient than those on cognition60,61, making it less likely that 
direct effects of youth education on brain volume would persist into 
old age. Accordingly, a study found no evidence of structural brain 
differences resulting from the increase in mandatory schooling in the 
UK from 15 years to 16 years, when assessed 50 years later62. Instead, 
intracranial volume has a stronger relationship to education than 
gray matter volume33. In fact, the association between education and 
intracranial volume was twice as large in the present study as the asso-
ciation with the brain component, and removing intracranial volume 

from the model strengthened the memory–brain relationship. This 
again points to selection effects. Furthermore, it is consistent with 
genetic evidence63, although it is important to note that, despite edu-
cation and cognitive function being genetically correlated64, some 
of the predictive power of polygenic scores for these traits reflects 
environmental amplification of the genetic effects, which vary across 
environments64,65.

Nonetheless, education could lead to improved cognitive scores 
without detectable brain structure effects. Natural experiments 
suggest impacts of education on cognitive function26–28, including 
memory23–25, although such effects could reflect improvements in 
test-taking skills rather than changes in brain structure or cognitive 
functions outside the testing environment21. Such effects could con-
tribute to reductions in early dementia diagnoses, as recently shown 
in a study of the 1972 UK school reform66, without necessarily reducing 
brain pathology. However, it would be surprising for the relationship 
between education and memory test performance to remain linear if 
test-taking skills were the main factor, as improvements would likely 
plateau at some point. Hence, test-taking skills are unlikely to be the 
major contributor to the superior memory performance in highly 
educated individuals.

The importance of childhood factors
The most coherent interpretation of the current results is that any 
positive effect of education on cognition in aging must stem from 
early schooling29. The parallel memory–education associations across 
the age range align with evidence that education enhances lifelong 
cognitive function without mitigating age-related decline. Still, most 
cognitive intervention studies have found that the positive effects on 
cognitive scores diminish over time21,67. Thus, any early effect of edu-
cation on cognition would likely need to be sustained through some 
mechanisms that help maintain the initial benefits.

This idea aligns with the gravitational hypothesis, which suggests 
that the stability of individual differences in cognition is shaped by 
consistent exposure to the same environments over time, including 
social, educational and economic contexts21,68,69. Studies have shown 
that ‘cognitive stimulation’ in the workplace is associated with a lower 
risk of dementia diagnosis70, although it does not fully account for the 
link between education and reduced risk71. Furthermore, individuals 
with higher cognitive function may naturally seek out cognitively 
stimulating activities, regardless of their formal education.

The linear association between memory performance and edu-
cation is interesting. If education directly causes higher cognitive 
scores, one might expect diminishing returns with increasing years 
of schooling. This question has not been adequately addressed by 
quasi-experimental methods29 and could reflect additive selection 
effects across the spectrum of educational levels. It is also noteworthy 
that this pattern holds across diverse samples from many countries and 
cohorts, suggesting robustness to societal variations.

Considerations and future research
Although we did not specifically examine variations across time31 
or societies32–34, other studies have found relatively consistent edu-
cation–cognition associations72, in line with our comparisons with 
countries in Africa, Latin America and East and South Asia. SHARE 
employed probability sampling, but the MRI samples are generally 
less representative73. Although it is difficult to estimate the impact 
of this, we note that the relationships were replicated in the brain 
imaging cohorts.

Test scores correlate with important real-life indicators, such as 
work participation and independent living, but it remains unclear to 
what extent differences in scores reflect daily life function66. Education 
could improve test scores with minimal effect on the underlying cogni-
tive construct, especially in crystallized or domain knowledge-based 
tests, but maybe less so in fluid tasks such as list recall21, although 
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effects have been reported for compound (for example, the g-factor) 
measures of cognition29. One study found that the relationship between 
education and cognitive scores, after controlling for childhood cogni-
tion, involved direct effects on specific cognitive skills, including mem-
ory, rather than being mediated by the g-factor74. Still, we observed 
similar associations across several cognitive domains. Finally, although 
structural brain change is predictive of memory decline in aging75, other 
measures could reveal different relationships.

Conclusion
In this large-scale, geographically diverse longitudinal mega-analytic 
study, we found that education is related to better episodic memory 
and larger intracranial volume and modestly to memory-sensitive brain 
regions. These associations are established early in life and not driven by 
slower brain aging or increased resilience to structural brain changes. 
Therefore, effects of education on episodic memory function in aging 
likely originate earlier in life.
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Methods
The research complies with all relevant ethical regulations, and all par-
ticipants provided informed consent. The main project was approved 
by the Norwegian Regional Committee for Medical Research Ethics 
South (approval no. 8122), and each substudy was approved by the 
relevant ethical review board, as specified in Supplementary Table 3.

Samples
SHARE cohort. SHARE is a research infrastructure for studying the 
effects of health, social, economic and environmental policies over 
the life course of European citizens and beyond (https://share-eric.
eu/)39. SHARE contains observations of individuals from 50 years of 
age from 28 countries, recruited to be representative of the population 
in each country. Data for the present analyses were extracted from 
easySHARE release 8.0.0 (10 February 2022, https://doi.org/10.6103/
SHARE.easy.800); see refs. 76,77 for methodological details.  
easySHARE release 8.8.0 is based on SHARE waves 1, 2, 3, 4, 5, 6, 7 and 
8 (https://doi.org/10.6103/SHARE.w1.800, https://doi.org/10.6103/
SHARE.w2.800, https://doi.org/10.6103/SHARE.w3.800, https://doi.
org/10.6103/SHARE.w4.800, https://doi.org/10.6103/SHARE.w5.800, 
https://doi.org/10.6103/SHARE.w6.800, https://doi.org/10.6103/
SHARE.w7.800, https://doi.org/10.6103/SHARE.w8.800)39,78. Partici-
pants included in the analyses participated in up to six waves of data col-
lection. In total, we included data from 130,880 participants (mean age 
64.9 years at baseline, 50.1–112.0, 59,363 males and 71,517 females), with 
an average of 2.7 waves (s.d. = 1.63) with a mean maximum follow-up 
interval of 6.53 years (0.9–15.9, s.d. = 3.93). In total, 352,953 memory 
test sessions were included, with two test results (immediate versus 
delayed recollection) for each—that is, 705,906 memory scores went 
into the analyses. Respondents aged younger than 50 years (individuals 
recruited due to being spouses of other participants) were excluded 
from the sample. An overview of the age distribution per country is 
provided in Fig. 1a. Sample distribution as a function of timepoints, 
education category and age is provided in Supplementary Fig. 3.

Memory was assessed with a 10-word verbal recall test. The word 
list is read out loud to the participants, and then recall is tested imme-
diately after the presentation (recall 1) and then after a delay of approxi-
mately 5 minutes (recall 2). Multiple versions of the lists are assigned 
to the respondents41. The response distribution is shown in Supple-
mentary Fig. 4. There were no ceiling effects, which is important when 
assessing longitudinal change for the best-performing participants. 
There were some floor effects for recall 2 but less for recall 1, suggest-
ing that we can estimate longitudinal chance well for most baseline 
levels of memory. Because education is associated with differences in 
memory scores, ceiling and floor effects could potentially obscure real 
differences in change, but this is unlikely to have affected the current 
results given the response distribution below. Scores were lower for 
delayed than immediate recall (odds ratio = 0.535, confidence interval: 
0.534–0.537), and females scored higher than males (odds ratio = 1.160, 
confidence interval: 1.153–1.168).

In addition to the memory measures, we extracted the variables 
age, sex, birth year, education (based on the ISCED 1997) and country 
of current residency.

MRI cohorts. We combined data from 13 datasets with longitudinal 
brain MRI scans and memory assessments: LCBC79, Betula80,81, UB82,83, 
BASE-II84,85 and Cam-CAN86 datasets (from the Lifebrain consortium)40 
as well as the COGNORM87, the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (https://adni.loni.usc.edu)88, BBHI89, the 
Harvard Aging Brain Study (HABS)90, the UK Biobank (https://www. 
ukbiobank.ac.uk/)91, PREVENT-AD92,93, OASIS3 (https://sites.wustl. 
edu/oasisbrains/)94 and VETSA95. Sample size was maximized for each 
analysis and, hence, varies due to data availability and missingness (see 
Supplementary Table 2 for an overview). In addition to cohort-specific 
inclusion and exclusion criteria, participants older than 50 years 

without cognitive impairment, Alzheimer’s dementia or severe neu-
rological or psychiatric disorders were included. Additionally, MRI data 
from scanners with fewer than 15 measurements were also excluded. 
The initial dataset included individuals with 1–14 MRI acquisitions with 
longitudinal structural MRI data spanning up to 15.8 years. Similarly, 
memory assessments range from one to 24 observations per individual 
with a follow-up up to 28 years. For detailed descriptions of general 
characteristics of each dataset, see the study-specific citations above. 
An overview of each dataset is given in Supplementary Information 
(Supplementary Table 1). The main sample descriptives are provided 
in Extended Data Table 2, but because the exact sample size varies 
somewhat between analyses depending on data availability, the spe-
cific characteristics for the samples used and their age distributions 
used to address the different research questions are provided in Sup-
plementary Table 2 and Supplementary Fig. 1.

Education in the brain imaging cohorts. For each dataset, educa-
tion was categorized as high or low using a mean split. We chose this 
approach because quantitative distributions of education were often 
highly non-Gaussian, and level-based codifications were somewhat 
arbitrary due to idiosyncratic reporting of years of education and vari-
ations in schooling systems across years and country. To ensure robust-
ness, we conducted analyses with an alternative operationalization of 
education, categorizing individuals with or without tertiary education. 
When education data were provided as qualifications or categories, 
these were converted to years of education based on country-specific 
norms. Individuals were then grouped as having high or low educa-
tion based on the median. For the tertiary education categorization, 
the reverse process was applied, converting years of education into 
education qualifications. For reporting consistency, a lower cap of 
6 years and an upper cap of 20 years were applied to education years. An 
overview of education characteristics for each MRI sample is provided 
in Supplementary Table 4 and Supplementary Fig. 2.

Memory function in the brain imaging cohorts. For each sample, we 
operationalized memory performance as a z-normalized score based 
on the first timepoint and the different available memory tests. When 
multiple scores were available, we used the first component of a PCA 
with all measures as inputs. For each dataset, we regressed out age  
(as a smoothing term), sex and one or two dummy test–re-test regres-
sors using GAMMs (‘gamm4’ R package)43. Individual identifiers were 
used as random intercepts, and the number of dummy test–re-test 
regressors depended on whether the dataset had two or three or more 
waves with memory function data. The residuals were used as an esti-
mate of memory function in each observation. An overview of tests 
included in the memory performance score for each dataset is provided 
in Supplementary Table 5.

MRI acquisition and preprocessing. Structural T1-weighted (T1w) 
MPRAGE and FSPGR scans were collected using 1.5T and 3T MRI scan-
ners. Information regarding scanners and scanner parameters across 
datasets are presented in Supplementary Table 6. We used the longitu-
dinal FreeSurfer version 7.1.0 stream96 for cortical reconstruction and 
volumetric segmentation of the structural T1w scans97–99. For sessions 
with multiple scans, data from the scanners were averaged. In brief, 
the images were processed using the cross-sectional stream, which 
includes the removal of non-brain tissues, Talairach transformation, 
intensity correction, tissue and volumetric segmentation, cortical 
surface reconstruction and cortical parcellation. Next, an unbiased 
within-subject template space based on all cross-sectional images 
was created for each participant, using robust, inverse-consistent 
registration. The processing of each timepoint was then reinitialized 
with common information from the within-subject template to increase 
reliability and statistical power. Except for the Betula dataset, all data 
were preprocessed on the Colossus processing cluster, part of the 
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Services for Sensitive Data (https://www.uio.no/tjenester/it/forskning/ 
sensitiv/), University of Oslo. Memory-sensitive brain measures for 
each observation were derived using regional loadings based on the 
‘Destrieux’ (cortical)100 and ‘aseg’ (subcortical) atlases101.

Memory-sensitive brain measures. We computed two complemen-
tary measures of brain structure sensitive to memory, capturing dif-
ferent aspects of memory function in older age. The primary measure 
was defined as a longitudinal brain component sensitive to memory 
changes inspired by Vidal-Piñeiro et al. (in preparation). The second 
measure, for the purpose of assessing the robustness of the results, 
was trained on independent scans to detect cross-sectional brain–
memory relationships in aging. The components were highly correlated 
(r = 0.71), both decrease with age (r = −0.67 and r = −0.64, respectively) 
and include partially overlapping sets of brain regions. The first meas-
ure (brain PC) is optimized to be sensitive to memory changes in aging, 
whereas the second (brain LASSO) is optimized to detect also offset 
(that is, baseline) associations. See Supplementary Information for a 
full description of LASSO.

Brain PC as a change-based, memory-sensitive measure. This meas-
ure was derived from a sample largely overlapping with that used for 
the statistical analyses and the Australian Imaging, Biomarker and 
Lifestyle Flagship Study of Ageing in the present work but included 
participants down to age older than 18 years. Brain PC is based on a PC 
of longitudinal change in 20 cortical thickness and nine subcortical 
volume regions. Brain regions were harmonized using a normative 
modeling framework102,103 with the PCNtoolkit (0.30.post2) in the 
Python3 environment104 (version 3.9.5). This framework offers several 
advantages: (1) it is run independently across sites; (2) it can isolate 
site effects from other sources of variance associated with it; and (3) it 
produces site-agnostic deviation scores (z-statistics) adjusted for age 
and sex. PCNtoolkit uses a hierarchical Bayesian regression (HBR) tech-
nique105 and pretrained models from 82 different datasets, including UK 
Biobank and Cam-CAN data. To avoid losing longitudinal observations, 
we performed this step recursively by iteratively (n = 100) holding out a 
calibrating sample and computing the estimates on the remaining data. 
The average scores of all iterations were used as the standardized scores 
for each observation. Scanners contributing with fewer than 12 unique 
individuals or fewer than 25 observations were excluded. For scanners 
contributing more than 12 and fewer than 32 unique individuals, we 
used a calibration sample consisting of all but two participants and 
estimate the harmonized scores in these two. For scanners with 32 or 
more unique individuals, we used, in each iteration, a held-out sample 
of 30 individuals while estimates were applied on the rest.

Next, we selected individuals with at least two observations and 
a minimum follow-up of 1.5 years. For both MRI and memory preproc-
essed data, we estimated yearly change for each participant by regress-
ing data on follow-up time. Change data were then fed into separate 
linear mixed models as implemented in lme4 and lmerTest106,107, one 
per brain region. Note that here we used estimates of change, and there 
was only one observation per individual. For each region, we predicted 
memory change by brain change, using dataset as random intercepts. 
Additionally, we used weights to account for potential heteroskedastic-
ity. That is, individuals with short follow-up periods and fewer observa-
tions contribute with more unreliable, high-variance data and, thus, 
should produce an unequal spread of residuals. We used the square of 
reliability as weights as estimated in ref. 108. Longitudinal reliability 
is a function of variance in change and mean measurement error for a 
given region and number of observations and total follow-up time for 
a given individual. After FDR correction (P < 0.05), 29 regions showed 
significant associations between brain change and memory change, 
including nine volumetric subcortical regions (bilateral amygdala, 
hippocampus and thalamus, left lateral and inferior lateral ventricle 
and right accumbens area) and 20 cortical thickness regions (left G 

cingul-Post-dorsal, G cingul-Post-ventral, G insular_short, G oc-temp_
med-Parahip, G front_inf-Opercular, G front_inf-Triangul, G subcal-
losal, S temporal_sup; right G Ins lg&S cent_ins, S circular_insula_ant, S 
oc-temp_med&Lingual, S suborbital; bilateral G temp_sup-Plan_polar, S 
orbital-H_Shaped, S front_middle, S circular_insula_inf). These regions 
were entered into the PCA to extract the PC of the memory-sensitive 
brain regions, yielding a brain measure sensitive to episodic memory 
change in aging. All regions except the ventricles showed positive 
loadings with the brain PC.

Statistics
SHARE. Analyses were performed in R (mostly version 4.2.1 (ref. 109)) 
using the brms package’s110 interface to the probabilistic programming 
language Stan111. To assess effects of education on memory and memory 
change, we ran logistic regressions with memory recall as dependent 
variable, yielding odds ratios as the most relevant model parameter to 
interpret. An odds ratio of 1 corresponds to a regression coefficient of 
0. The main model was:

formula=recall|trials (10) ~ test + mo (past_tests) 
+ sex + country + edu + time_since_baseline_z:edu +  
s(age_at_baseline_z,bs="cr") + time_since_
baseline_z + age_at_baseline_z:time_since_
baseline_z + (1|country/mergeid)

Each memory test was used as a separate response, yielding two 
observations per timepoint, and the variable ‘test’ represents difficulty 
of condition 2 relative to condition 1. To control for practice effects, a 
monotonic function of the number of previous tests taken was included 
as covariate. We used a smooth function of age to allow nonlinear rela-
tionships. Individual-specific intercepts per participant were nested 
within country. Default priors were used for all parameters, and two par-
allel chains of Stan’s No-U-Turn Sampler112 were run for 1,500 iterations, 
discarding the first 1,000 as warmup. This yielded 1,000 post-warmup 
samples. For the offset/level analyses, education (edu) was the variable 
of interest, whereas, for the slope/change analyses, edu × time since 
baseline was the critical variable. z-transformed variables were used 
in the model fitting for numerical stability, and results were converted 
back to their natural units for easier interpretability—for example, age 
and time in years.

MRI cohorts. All the analyses were performed using the R environ-
ment (version 4.2.1)109. Visualizations were made with the ‘ggplot2’113 
and ‘ggseg’114 R packages. Memory, brain variables and eTIV were 
z-standardized before inclusion in the models. Outlier values defined 
as values >5 s.d. from the mean were removed from the analyses. Analy-
ses were run using GAMM models as implemented in the ‘gamm4’ R 
package43, unless otherwise specified.

Memory score was modeled as a function of education, time since 
baseline, sex and a dummy regressor for test–re-test effects as fixed 
effects. Baseline age by sex was included as a smooth term. Random 
intercepts were modeled per participant and dataset, with random 
slopes of re-test effects and time from baseline at a dataset level. To test 
the effects on memory change, the model was re-run with an additional 
education × time interaction term. Education was operationalized 
either as mean-split or based on tertiary education in separate models.

Brain structure was modeled as a function of education, time since 
baseline, sex and eTIV as fixed effects. Baseline age by sex was included 
as a smooth term. Random intercepts were modeled per participant, 
scanner and dataset with random slopes of time included at a dataset 
level. To test effects on brain change, the model was re-run with an 
additional education × time interaction term. As control analyses, we 
re-ran the GAMM models without eTIV as covariate. Additionally, we 
ran a linear mixed model as implemented in lme4, with eTIV being mod-
eled as a function of education, sex and baseline age as fixed effects, 
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and site and dataset were included as random intercepts. Only the 
first observation of each participant was included, as eTIV and educa-
tion are time-invariant variables. Alternative operationalizations of 
education and brain structure were tested in separate, but otherwise 
identical, models.

We used a fuzzy join algorithm, as implemented in ‘fuzzyjoin’115, 
to link pairwise MRI and cognitive observations, as these were not 
necessarily collected on the same day. MRI observations were matched 
with the closest cognitive observations within a maximum time gap of 
1 year. Unlinked observations were excluded from the analyses. The 
relationship among brain, memory level and education was assessed 
with several models. ‘Brain level and memory level’: Memory was mod-
eled by brain structure, sex, time, eTIV and a dummy regressor for 
test–re-test effects as fixed effects. Baseline age by sex was introduced 
as a smooth term. Random intercepts were modeled per participant, 
scanner and dataset with random slopes of re-test and time modeled 
at a dataset level. ‘Brain change and memory change’: An additional 
brain × time term was added to the model. ‘Moderating effect of educa-
tion on level–level associations’: Additional terms for education and 
education × brain were added in the first model. ‘Moderating effect of 
education on change–change associations’: A triple interaction term 
(brain × time × education) as well as its lower-order components were 
added in the first model. ‘Control analyses’: A main education term, 
without any interaction, was added to the models to assess level–level 
and change–change associations between brain and memory, to test 
whether the strength of these associations was affected by education 
level. As with other analyses, alternative operationalizations of educa-
tion and memory-sensitive brain structure were tested in separate but 
similar models.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Each dataset has different owners. Contact information to be used for 
data access is specified in Supplementary Table 3. Parts of the data 
used in preparation of this article were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.
usc.edu/). As such, the investigators within the ADNI contributed to 
the design and implementation of ADNI and/or provided data but did 
not participate in the analysis or writing of this report. A complete 
listing of ADNI investigators can be found at https://adni.loni.usc.edu/
wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. 
More information about the Vietnam Era Twin Study of Aging (VETSA), 
including a list of VETSA investigators, is available at https://psychiatry.
ucsd.edu/research/programscenters/vetsa/index.html.
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Extended Data Table 1 | Associations among education, memory score and memory score decline

‘High school’ is used as reference. Memory change (odds ratio per year) results are presented with three decimals to allow inspection of the very weak effects. Confidence interval is 95%.
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Extended Data Table 2 | Sample characteristics for samples with MRI

N, number of unique participants. Higher education: more than high school education.
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