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Why educationis linked to higher cognitive functionin agingis fiercely
debated. Leading theories propose that education reduces brain decline in
aging and enhances tolerance to brain pathology or that it does not affect
cognitive decline but, rather, reflects higher early-life cognitive function.
To test these theories, we analyzed 407,356 episodic memory scores from
170,795 participants older than 50 years, alongside 15,157 brain magnetic
resonance imaging scans from 6,472 participants across 33 Western
countries. More education was associated with better memory, larger
intracranial volume and slightly larger volume of memory-sensitive brain
regions. However, education did not protect against age-related decline

or weakened effects of brain decline on cognition. The most parsimonious
explanation for the results is that the associations reflect factors present
earlyinlife, including propensity of individuals with certain traits to pursue
more education. Although education has numerous benefits, the notion that
it provides protection against cognitive or brain decline is not supported.

Although the total number of people with dementia will increase sub-
stantially due to population growth and aging’, the incidence seems to
be declining®?, and older adults have better cognitive function today
than 20 years ago®. One hypothesis is that this reflects broad societal
and individual lifestyle changes and that dementiaincidence can be
further reduced by promoting these'”. Education has repeatedly been
suggested to be one such potential protective factor®’, in line with
observations of robust associations between education and higher
cognitive function in aging as well as declines in dementia incidence

withincreasing population educational attainment®’. However, results
thus far are heterogeneous and point in different directions, and the
specific mechanisms that could explain such a causal link are widely
debated'®. We, therefore, suggest addressing these questions by con-
ductingalarge mega-analysis of longitudinal brain and cognitive stud-
ies covering a wider geographical distribution of samples.

Education could resultin better cognitionin aging by contribut-
ingto alower rate of age-normative brain decline"—thatis, ‘brainmain-
tenance’—which has been associated with better episodic memory™.

A full list of affiliations appears at the end of the paper.
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Fig.1| Geographical and age distribution of samples. a, Total number of completed memory test sessions per country. b, Number of brain MRIscans per country.
Maps were generated using the IMAGE Interactive map generator (https://gisco-services.ec.europa.eu/image/).

Studies have reported that older adults with higher education have
less brain pathology®, less brain decline in presymptomatic dementia
and less accumulation of cerebrovascular lesions”. However, arecent
longitudinal study investigating two independent samples did not find
different rates of change in hippocampus and age-sensitive regions of
the cerebral cortexin more educated participants'®. Alternatively, edu-
cation could make people more resilient to underlying brain pathol-
ogy—that is, yielding higher ‘cognitive reserve™. According to this
theory, educationleads to more efficient processing of cognitive tasks,
which, inturn, allows for higher performance despite age-normative
levels of brain decline'®. Although a popular theory>”, alongitudinal
study found that education did not weaken the link between hip-
pocampal atrophy and memory change®. Both the maintenance
and the reserve accounts of education imply that education causally
influences late-life cognition by reducing or postponing age-related
decline. This is controversial, however, because even though educa-
tionis associated with better cognitive function among older adults,
itisnotclear that more educated persons show less cognitive decline
when measured longitudinally®?.,

An alternative perspective holds that the association between
education and cognitive performance is persistent across the adult
lifespan. This contrasts with the more aging-centered views pre-
sented above. Under this alternative view, if education has a positive
causal effect on cognitionin aging, it would be by permanently boost-
ing cognitive function earlier in life, causing persistent differences
between educational groups. Increased compulsory schooling has
been shown to elevate scores on tests of memory* 2, intelligence?*”’
and general cognition?®, with effects detectable decades later”. This
perspective could also be consistent with a lack of causal effects
of education on cognitive function, however, as those with higher
initial cognitive functioning would be expected to reach higher
levels of education than their peers. Hence, the topic of the role of
education in cognitive function and brain health in aging is riddled
with controversies®.

Nonetheless, contrasting predictions can be derived from the
different theories. If educationimproves memoryin older age by shap-
ing brain aging, we expect better preservation of memory-sensitive
brain regions among individuals with higher education. If education
improves cognitive reserve, we expect more tolerance to brain pathol-
ogy, indexed by alower correlation between brain decline and cogni-
tive decline. Incontrast, if the education-memory-brain relationship
reflects stable individual differences, education should not correlate
with either memory or brain decline. Inthat case, we also would expect

to see selection effects, in the sense that participants with specific
traits, especially higher cognitive function, are more likely to pursue
furthereducation. Itis also relevant to examine whether re-test effect—
the tendency for performance to increase as a function of previous
tests taken—is exaggerated with higher education. If more education
yields cognitive reserve, this may manifest as a greater ability to take
advantage of previous testing experience and to develop more efficient
test-taking strategies.

A major challenge in addressing these questions is that large,
representative and heterogeneous longitudinal samples with suf-
ficient statistical power are needed. The geographic coverage is criti-
cal, because relationships may vary across time* and societies**.
For example, the population attributable fraction (PAF) of dementia
dueto low education varied from 1.7% in Argentina to 10.8% in Bolivia
inastudy of seven Latin American countries®*. We compiled data from
33 countries across Europe, the United States and Israel, including a
total of 407,356 memory tests from 170,795 participants with up to
seven follow-up sessions (Fig. 1a), ensuring that the results are not
confined to one specific time and place. Still, because the samples come
from Western, Educated, Industrialized, Rich, Democratic (WEIRD)
countries, we compare the results to patterns from non-WEIRD socie-
tiesin Africa, Latin America and East and South Asia®.

Episodic memory isaunique memory system® that canbe defined
as the ability to recall information tied to a specific time or place, in
contrast to semantic memory, whichisrecall of general knowledge and
facts”. Inresearch and clinical assessments of memory function, epi-
sodic memory is typically measured as the amount of newly acquired
information that can later be explicitly recalled, such as the number
of words remembered from a presented list. We focus on episodic
memory because it is a particularly age-sensitive long-term memory
system™, and we assess it using a verbal recall test, one of the most
employed methods.

To address brain mechanisms, we analyzed 15,157 brain magnetic
resonance imaging (MRI) scans and concurrent memory tests from
6,472 participants across seven countries (Fig. 1b). Brain decline was
defined as within-participant reductions over time inmemory-sensitive
brain regions. The primary data sources were the population-based
multinational Survey of Health, Ageing and Retirement in Europe
(SHARE) (https://share-eric.eu/)* and the Lifebrain consortium*°
(https://www.lifebrain.uio.no/), enriched with legacy databases.
For sample representativity, SHARE uses the best available sample
frame resources in each country to achieve full probability sampling,
including access to population registers. The MRI populations vary
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Fig.2|Age, education and practice effects on memory. a, Memory score
trajectory over age. The y axis denotes memory score on the logit scale, and
thelines show the predicted memory performance over baseline age for each
education category. b, Re-test effects for each education group. ¢, Comparing
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re-test effects for each education group to the ‘High school’ group, lines show the
ratio of odds ratio for the given education/odds ratio for ‘High school’ (dashed
horizontal line). Shaded areas denote 95% confidence interval.

in representativity, and, hence, we validate the memory results from
SHARE in the MRI samples before conducting the brain analyses.

Results
SHARE cohortresults
Episodic memory was assessed with a 10-word verbal recall test, with
two conditions (immediate and 5-minute recall), using multiple ver-
sions across waves and participants*. Each condition was separately
included in the statistical models, yielding two observations per
timepoint per participant. Generalized linear models (GLMs) with a
binomial link were run using memory score as dependent variable,
with theinteraction between education and time since baseline as the
critical term, using test type (immediate or 5-minute delay), a mono-
tonic function of the number of previous tests taken (to control for
re-test effects), education, self-reported sex, country, baseline age
(smooth function), time since baseline and the age x time interaction
ascovariates. Individual-specific intercepts per participant were nested
within country. z-transformed values for age and time were used in the
model fitting and converted back to natural units when showing the
results. Memory offset refers to the cross-sectional differences between
groups—thatis, main effect of education. Memory change was defined
as change in memory over time within participants, with differences
between educationgroups represented by the education x timeinterac-
tion. The main outputs of the statistical model were the odds ratios of
remembering aword compared to areference group. For readability, we
used simplified terms for education categories, with definitions, SHARE
categorization and mapping to the International Standard Classifica-
tion of Education (ISCED) presented in Supplementary Information.
Memory scores were lower with higher baseline age, showing
slightly accelerating trajectories (smoothing parameter for the com-
bined sample = 45.8, confidenceinterval: 20.7-81.5). Figure 2a revealed
aperfectordering of higher scores with more education across age. ‘No
education” had an odds ratio of 0.54 (Cohen’s d = -0.33) compared to
thereference category (‘High school’), whereas ‘Master’s” had an odds
ratio of 1.55 (Cohen’s d = 0.24) (Fig. 3a and Extended Data Table 1),
yielding an odds ratio range of 1.01 and a Cohen’s d range of 0.57. This
confirms the well-known positive association between education and
episodic memory in aging and shows that the difference in memory
scoreisalmostidentical with eachincrease in education category.
Re-test effects were substantial and, thus, essential to adjust
for in analyses of change. Odds ratios increased almost linearly,
from 1.5 compared to baseline at the first follow-up to 2.5 at the
fifth follow-up (Fig. 2b). A small negative effect of time (1 year)
was observed on memory scores (odds ratio = 0.963, confidence
interval: 0.961-0.964), slightly increasing with age (age x time odds
ratio = 0.9981, confidence interval: 0.9980-0.9982). These results
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Fig. 3| Associations among education, memory score and memory score
decline. a, Associations between education and memory offset scores expressed
by odds ratios. b, Associations between education and decline in memory scores
expressed by odds ratios. ‘High school’ is used as reference (dashed line). Error
bars denote 95% confidence interval and odds ratio. Results are based on 130,880
unique participants and 352,953 memory tests. ref., reference.

show that test scores increase when participants are tested repeat-
edly but that scores become lower over time when this is accounted
for. Testing whether higher education was associated with less mem-
ory decline (Fig. 3b and Extended Data Table 2), we found negligible
effect sizes—all odds ratios less than 1.005—meaning that there were
no meaningful differences. Furthermore, no systematic differences
were observed in re-test effects between participants of different
educationlevels (Fig. 2c). Although the immediate and delayed recall
conditions were highly correlated (r = 0.74), the delayed condition
was more difficult and likely to a larger extent reflected long-term
memory. We repeated the analyses for each condition separately,
yielding identical results (Supplementary Figs. 5and 6).

Thefirst set of analyses showed that education was linearly associ-
ated withbetter memory scores but not differences inmemory decline
or re-test effects. To test the hypothesis that the education-memory
associations reflect selection effects, we re-ran the analyses using
‘relative’ education as measure of interest. That is, for each participant,
we calculated amount of education relative to the other participants
fromthe samebirth cohort, sex and country. This yielded a percentile
score for each participant (0-100%), indexing amount of education
relative tosimilar peers. This analysis provides a test of selection effects
on education-memory associations—that is, that people with some
unmeasured traits take more education—and this trait is correlated
with late-life memory scores. Absolute level of education was used as
covariate, as absolute and relative education would be correlated. By
using relative education, we were able to partially account for these
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Fig. 4 |Sensitivity analyses. a, Numeracy score trajectory over age. The y axis
denotes numeracy score on the logit scale, and the lines show the predicted
numeracy performance over baseline age for each education category.

b, Orientation score trajectory over age. The y axis denotes orientation score on
thelogit scale, and the lines show the predicted orientation performance over
baseline age for each education category. Shaded areas represent 95% confidence

intervals. ¢, Offset results: Cohen’s d for each education category compared to
the reference category (‘High school’) for three cognitive tests from SHARE.

d, Longitudinal change results. e, Cohen’s d compared to the ‘High school’
category in SHARE-HCAP.f, Effects for memory (HCAP) compared to the
‘Middle school’ category across culturally diverse samples.

selection effects that vary between men and women from different
birth cohorts in countries with widely varying educational opportu-
nities and experiences. Birth cohort was measured in bins of adecade
(1900-1909,1910-1919, ...,1960-1969). The results showed thatinclud-
ingrelative educationinthe model reduced the associations between
absolute education and memory, whereasrelative educationshowed an
independent, positive association with memory. The effects were mod-
est, as moving from the lowest (0) to the highest (100) percentile was
associated with an odds ratio of 1.17 (confidence interval: 1.14-1.20)/
Cohen’sd =0.08 compared to the reference group (‘High school’) (Sup-
plementary Fig.10). This suggests that selection effects explain some
of the association between education and memory in aging.

Further support for selection effects would be if variables reflect-
ingindividual differencesin childhood, before orin the first years of
schooling, could account for the associations later in life. We re-ran
the analyses controlling for two proxies of earlier-life cognitive func-
tion—self-assessed mathematical and language skills at age 10 years—
as well as a proxy of ‘parents’ scholarly culture™*— number of books
inthe house at age 10 years. If this reduced the association between
episodic memory scores and education, this would support the
hypothesis of selection effects. The three childhood variables were
all significant confounders of the association between education and
memory score (math: estimate = 0.104, confidence interval: 0.099-
0.108; language: estimate = 0.118, confidence interval: 0.114-0.123;
books: estimate = 0.083, confidence interval: 0.079-0.087). When
controlling for them, the association was reduced: the odds ratio
and Cohen’s d ranges from the original model were 1.01 (0.54-1.55)

and 0.58 (-0.34 to 0.24), respectively, whereas the adjusted model
ranges were odds ratio 0.60 (0.65-1.25) and Cohen’s d 0.36 (-0.24
to 0.12). This shows that a part of the late-life association between
education and memory score could be explained by self-reported
childhood cognitive function and home environment. For the analy-
ses ofintra-individual memory decline over time, controlling for each
childhood variable further reduced the already minute associations
with memoryrecall, rendering none of them statistically significant
(full results in Supplementary Information).

Sensitivity analyses SHARE
To explore whether the results were specific to the verbal recall test,
we first repeated the analyses for two additional tests from SHARE
(Supplementary Information). ‘Numeric skill' yields ameasure of math-
ematical ability, and ‘orientation for time and place’isatest sensitive to
age-related cognitive decline. Similar to the verbal recall results, scores
were perfectly ordered according to educational level for both tests
(Fig.4a-d), witheffect sizes numerically slightly larger (orienting: odds
ratio range =1.0 (0.26-1.26), Cohen’s d range = 0.86 (-0.74 to 0.12);
numeracy: odds ratio range = 1.48 (0.31-1.79), Cohen’s d range = 0.96
(-0.64 t0 0.32)). Age slopes were parallel, with minute education-
change associations: odds ratio range 0.982-1.007 for orientation
and 0.982-1.002 for numeracy. Hence, the pattern of results for verbal
recall generalizes to two other tests.

To explore whether the results could be replicated with a more
comprehensive test battery, we analyzed the recently released com-
prehensive cognitive test protocol administered to a subsample of
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participants at the latest wave of the survey (SHARE-HCAP (Harmo-
nized Cognitive Assessment Protocol); Supplementary Information).
We screened out cognitive impairment and restricted the sample to
participants older than 65 years, yielding 25 test scores from 1,380 par-
ticipants, including 11memory scores. Due to the smaller sample, four
education categories were used (primary or less n = 115, middle school
n=192, highschooln =608, vocational or university level n = 465). We
used principal component analysis (PCA) to extract individual-level
scores for four cognitive domains (episodic memory, executive func-
tion, language and verbal fluency and orientation). Associations
between education and performance were monotonously positive for
alldomains (orientation Cohen’s d range (minimum, maximum) = 0.74
(=0.29 t0 0.45); episodic memory range =1.22 (-0.54 to 0.68); execu-
tiverange =1.03 (-0.24 t0 0.79); language range =1.00 (-0.36 t0 0.64)
(Fig. 4e)). The age trajectories were close to parallel (Supplementary
Information), except for more complex curves for the lowest education
level, probably due to few participantsin this group. This demonstrates
that the mainresults for verbal recall are generalizable to other cogni-
tive tests and domains.

The data cover 33 countries in different continents but are
restricted to WEIRD societies. To explore whether the results gener-
alized to non-WEIRD societies, we plotted the memory component
score from SHARE-HCAP against memory scores from a recent HCAP
study of 16,524 older participants (59-78 years) in three non-WEIRD
countries (China, India and South Africa) and one partially WEIRD
country (Mexico)®. Inthese studies, substantial efforts were devoted to
validating HCAP across widely different cultures. Although education
and meanscores differed greatly compared to SHARE*, with less than
10% of participants from South Africa and China having high school
education or more, associations were remarkably similar (Fig. 4f). Inall
non-WEIRD samples, there were monotonous, almost linear relation-
ships between education and higher memory scores, mimicking the
SHARE-HCAP results. This suggests that the present cross-sectional
education-memory associations are not restricted to WEIRD socie-
tiesonly.

Brain MRI cohort results

Thirteen datasets with longitudinal MRI, memory assessments and
information about education were included from seven countries
across the North to South of Europe, the United States and Canada
(Fig.1b).Inadditionto cohort-specific inclusion and exclusion criteria,
all participants were older than 50 years without cognitive impairment
or neurological or psychiatric disorders. The initial dataset included
participants with1-14 MRl acquisitions with follow-up intervals up to
15.8 years and 1-24 memory assessments with follow-up intervals up
to 28 years. Sample characteristics are presented in Extended Data
Table 2, and cohort-specific descriptions are presented in Methods.

First, we tested whether the main cognitive results from SHARE
replicated in the MRI cohorts. As education coding varied, we could
not use the SHARE coding scheme, and education was, hence, dichoto-
mized based on the median split for each sample, with post hoc anal-
yses using ‘Higher education’ (education after high school) versus
‘Secondary education’ (high school or lower) (‘replication analyses’).
A generalized additive mixed model (GAMM)* was run using mem-
ory (z-normalized based on the first observation per each dataset)
as dependent variable, with education, time since baseline, sex and a
dummy for re-test effects as fixed effects and baseline age as smooth
term. Random intercepts were included per participant and dataset,
andrandomslopes of re-test and time were included for each dataset.
To test memory change, an education x time interaction term was
added to the model.

Similar to the SHARE results, whereas high education was asso-
ciated with better memory scores (8= 0.33, s.e.=0.009, P< 0.001,
Cohen’s d = 0.63), the education groups showed close to parallel
changes over time (Fig. 5d,e). Predicted change over 10 years was
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Fig. 5| Education, brain measures and episodic memory. a, Brain regions where
changes in structure and memory were related (FDR < 0.05) are highlighted, with
colorintensity reflecting the strength of each region’s loading on the PC. The
nucleus accumbens and leftinferior lateral ventricle are not shown. b, Predicted
brain PC score over baseline age. ¢, Three-year brain change (PC) for the high
(green) and low (orange) education categories. The lines represent the predicted
brain PCscore as afunction of time in each category. Shaded areas represent the
s.e. of subject-level predictions. d, Predicted memory score over baseline age
inthe MRIcohorts. e, Three-year memory change for each education category.
Thelines represent the predicted memory score as a function of time in each
category. Shaded areas represent 95% confidence intervals.

z=-0.20 for high education compared to z=-0.26 for low educa-
tion (effect of education group on memory z-score change per year:
L=0.006, s.e.=0.003, P=0.029, Cohen’s d = 0.01) (for complete
results, see Supplementary Information). Similar results were seen
when using the alternative education categorization. This confirmed
that the main findings from SHARE were also seen for the memory tests
inthe brain MRI cohorts.

Next, we extracted a brain variable sensitive to memory change.
For each participant, annual change in each of 166 brain regions
was calculated and related to memory change by a series of linear
mixed-effect models, yielding 29 false discovery rate (FDR)-corrected
significant regions (Fig. 5a). These were entered into a PCA, yielding
amemory-sensitive brain principal component (PC). This PC could
then be used to test the specific hypothesis that high education has
protective effects on brain change relevant for episodic memory and
the prediction fromthe cognitive reserve theory that highly educated
participants would experience less memory decline for a given level
ofbrain decline.

To test the association between education and brain PC score
(offset effects), a GAMM was run with education, time since baseline,
sex and estimated total intracranial volume (eTIV) as fixed effects and
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baseline age and sex x baseline age as smooth terms. Random inter-
ceptswereincluded per participant, scanner and dataset, and random
slopes of time were included for each dataset. The brain PC showed
the expected negative relationship to age, slightly accelerating from
about 70 years (Fig. 5b), and time (8=-0.07, s.e.=0.008, P<0.001).
Estimated lossinthe high education groupwasz=-0.68 overadecade
compared to z=-0.74 for the low group (interaction effect of educa-
tion x time on brainvolume: §=0.005,s.e.=0.002, P=0.015, Cohen’s
d=0.024), yielding close to parallel change slopes (Fig. 5c). Hence,
brain decline across memory-sensitive brain regions was very similar
inthe two education groups.

Incontrast, high education was slightly positively associated with
thebrainPC (8=0.04,s.e.=0.02,P=0.049, Cohen’sd = 0.17) and intrac-
ranial volume (8=0.12,s.e.=0.002, P< 0.001) (Fig. 6a). This means that
participants with high education on average had slightly larger regional
brainvolumes, smaller ventricles and larger head size. The association
with intracranial volume was numerically larger than the association
with the brain PC. Intracranial volume is developed in childhood and
undergoes minimal changes during school age, suggesting that this
associationreflects selection effects.

Finally, we tested whether the prediction from the cognitive
reserve theory that the relationship between brain decline and mem-
ory decline is weaker in participants with higher education. First, a
positive relationship was observed between the brain PC and episodic
memory score (§=0.073, s.e.=0.013, P< 0.001). Because the brain
PC was extracted from regions where brain change was related to
memory change, the memory change-brain change relationship was
given (f=0.01,s.e. = 0.002). More importantly, no significant educa-
tion x brain PC (8=0.01, s.e.=0.02, P=0.60) or education x brain
PC x time (8=0.004, s.e.=0.004, P= 0.43) interactions were observed.
This means that the relationship between brainand memory, and the
relationship betweenbrain changes and memory changes, did not vary
asafunction of education (Fig. 6b,c), contrary to the prediction from
the cognitive reserve theory.

Replication analyses

The mainanalyses were run using the alternative categorization of edu-
cation (more/less than high school) and a different brain component
derived using machine learning—thatis, aregularized regression model
(least absolute shrinkage and selection operator (LASSO)) used to pre-
dictmemory based on anindependent sample of 28,114 cross-sectional
MRI scans from the UK Biobank, yielding four model specifications
(Supplementary Table 8). Controlling for eTIV, cross-sectional educa-
tion-brain associations were relatively weak although significant at
P<0.05inthreemodels. The education x time interaction was signifi-
cantbutwith small effect sizesin the same three specifications. Effect
size was largest for the PC brain measure and the high school categori-
zation, with aninteraction coefficient of 0.008 compared to 0.005 for

thetwo other significant specifications. The brain x education x time
interaction on memory was not significant in any specification.

As an additional set of control analyses, we tested whether the
coefficients for the brain variablesin predicting memory were affected
byincluding educationinthe models (Supplementary Fig.11). The coef-
ficients changed only minimally, suggesting that the brain-memory
relationships were largely independent of education.

Discussion

Education was only minimally associated with less age-related declinein
episodic memory and rate of declinein memory-sensitive brain regions
and did not increase resilience to the brain changes. The small mag-
nitude of differences in brain and memory change across education
groups contrasts with the much larger differences in baseline levels,
highlighting a distinction between lifelong cognitive advantages and
age-related trajectories. Additionally, we found evidence that selection
effectsaccount for parts of the associations, meaning that people with
certain traits, such as larger brain volumes and higher cognitive func-
tionfromearly age, were more likely to pursue higher education. This
selection processlikely varies across social and demographic contexts
and educational systems. Nevertheless, clear patterns emerged across
diverse samples spanning multiple WEIRD societies and age cohorts.
The findings aligned with trends observed in non-WEIRD societies,
suggesting a certain degree of robustness across populations and
historical contexts.

Aroleforeducationinbrainand cognitive aging?

Theideathat higher education reduces age-related cognitive decline
is based on two complementary hypotheses. The first suggests that
education protects against memory decline by influencing lifestyle
factorsthat help preserve memory-sensitive brain regions—thatis, by
promoting brain maintenance. We found that less brain atrophy was
linked to better episodic memory?, yet differences in decline trajec-
tories of memory-sensitive brain regions across educational groups
were minimal.

This aligns with and extends previous findings'® and provides a
neurobiological explanation for why individuals with different edu-
cational attainment experience similar rates of age-related memory
decline?**. An implication is that behaviors associated with higher
education may not be as protective against brain decline, as often
assumed, because we would then expect accumulated effects over
time, leading to diverging age trajectories and different rates of brain
change between educational groups.

Thesecond hypothesis proposes that education protects cognitive
function by increasing resilience to brain decline, building a ‘cogni-
tive reserve™'®'’, We found little support for this idea. Differences in
aging trajectories for memory and memory-sensitive brain regions
were minimal, and structural brain decline was associated with similar
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amounts of memory decline across educational levels, aligning with
previous research on hippocampal® and cortical® atrophy.

Additionally, more education was not linked to larger re-test
effects, suggesting that higher education did not enhance the ability
to benefit from test experience*. Re-test effects reflect the capacity
to take advantage of previous testing to improve performance, and,
although more educated individuals encoded new information more
effectively—as reflected in their higher memory scores—this did not
translateinto greater gains fromrepeated testing. Similar findings have
been reported for tests of mental speed and reasoning®’.

Taken together, these results suggest that education does not
reduce brain decline or episodic memory in aging. Instead, the
observed associations likely reflect differences established earlier
inlife.

How do associations among brain volume, cognitive function
and education arise?

Theresults revealed relationships among education, memory function,
slightly larger volumes of memory-sensitive brain regions and larger
intracranial volume. The most straightforward explanation is that
individuals with higher cognitive abilities and larger brainvolumes are
morelikely to pursue higher education*®, Although participants faced
unequal opportunities and barriers to education*’, which may weaken
the link between cognitive abilities and educational attainment, the
findings suggest that selection may partly explain the associations:

First, consistent with selection effects, participants with higher
education relative to their peers—matched by sex, birth cohort and
country—had better memory function decades later even when
accounting for absolute education.

Second, controlling for proxies of childhood cognitive function
and ‘scholarly culture® attenuated the association between education
and memory performance. Earlier-life cognitive function predicts
cognitive ability and brain health in aging®"*, limiting opportunities
for causal effects of education beyond adolescence. This conclusion
aligns with asystematic review of the effects of education on dementia
risk, which suggested that low education is more strongly associated
with dementiawhenit reflects cognitive capacity rather than privilege
and when linked to other risk factors across the lifespan®.

Third, larger intracranial volume confounded the education-
memory relationship. Intracranial volume, a proxy for lifetime maxi-
mum brain size*, is often considered a measure of ‘brain reserve’ and
is linked to better cognitive function in aging, even after accounting
for brain pathology®. Because intracranial volume is fully developed
before adolescence, itis unlikely to be directly influenced by education.

Taken together, these findings suggest that earlier-life factors
contribute to the lifelong associations between education and cogni-
tion. Still, these observations do not preclude the possibility of causal
effects. Cognitive training can lead to improvements in memory and
brain structure, even in older adults®*~®, and early education could
similarly contribute to increased brain volumes of the magnitude
observed here.Because part of the relationship between cognition and
education canbe explained by neuroanatomical differences fromearly
childhood?®, brain structure may serve as a phenotype in the causal
pathway linking genetic variation to differences in cognitive function
and educational attainment®.

However, training-induced effects on brain structure tend to be
more transient than those on cognition®®®', making it less likely that
direct effects of youth education on brain volume would persist into
old age. Accordingly, a study found no evidence of structural brain
differences resulting from the increase in mandatory schoolinginthe
UK from 15 years to 16 years, when assessed 50 years later®. Instead,
intracranial volume has a stronger relationship to education than
gray matter volume®. In fact, the association between education and
intracranial volume was twice as large in the present study as the asso-
ciation with the brain component, and removing intracranial volume

from the model strengthened the memory-brain relationship. This
again points to selection effects. Furthermore, it is consistent with
genetic evidence®, although itisimportant to note that, despite edu-
cation and cognitive function being genetically correlated®*, some
of the predictive power of polygenic scores for these traits reflects
environmental amplification of the genetic effects, which vary across
environments®*®,

Nonetheless, education could lead to improved cognitive scores
without detectable brain structure effects. Natural experiments
suggest impacts of education on cognitive function*?, including
memory* %, although such effects could reflect improvements in
test-taking skills rather than changes in brain structure or cognitive
functions outside the testing environment®. Such effects could con-
tribute to reductions in early dementia diagnoses, as recently shown
inastudy of the 1972 UK school reform®, without necessarily reducing
brain pathology. However, it would be surprising for the relationship
between education and memory test performance to remain linear if
test-taking skills were the main factor, as improvements would likely
plateau at some point. Hence, test-taking skills are unlikely to be the
major contributor to the superior memory performance in highly
educated individuals.

The importance of childhood factors

The most coherent interpretation of the current results is that any
positive effect of education on cognition in aging must stem from
early schooling”. The parallel memory-education associations across
the age range align with evidence that education enhances lifelong
cognitive function without mitigating age-related decline. Still, most
cognitive intervention studies have found that the positive effects on
cognitive scores diminish over time?*’. Thus, any early effect of edu-
cation on cognition would likely need to be sustained through some
mechanisms that help maintain the initial benefits.

Thisideaaligns with the gravitational hypothesis, which suggests
that the stability of individual differences in cognition is shaped by
consistent exposure to the same environments over time, including
social, educational and economic contexts****, Studies have shown
that ‘cognitive stimulation’in the workplaceis associated with alower
risk of dementia diagnosis”™, although it does not fully account for the
link between education and reduced risk”. Furthermore, individuals
with higher cognitive function may naturally seek out cognitively
stimulating activities, regardless of their formal education.

The linear association between memory performance and edu-
cation is interesting. If education directly causes higher cognitive
scores, one might expect diminishing returns with increasing years
of schooling. This question has not been adequately addressed by
quasi-experimental methods® and could reflect additive selection
effectsacross the spectrumof educationallevels. Itis also noteworthy
that this pattern holds across diverse samples from many countries and
cohorts, suggesting robustness to societal variations.

Considerations and future research

Although we did not specifically examine variations across time*
or societies®**, other studies have found relatively consistent edu-
cation—-cognition associations’?, in line with our comparisons with
countries in Africa, Latin America and East and South Asia. SHARE
employed probability sampling, but the MRI samples are generally
less representative’. Although it is difficult to estimate the impact
of this, we note that the relationships were replicated in the brain
imaging cohorts.

Test scores correlate with important real-life indicators, such as
work participation and independent living, but it remains unclear to
what extent differences in scores reflect daily life function®. Education
couldimprove test scores with minimal effect on the underlying cogni-
tive construct, especially in crystallized or domain knowledge-based
tests, but maybe less so in fluid tasks such as list recall?, although
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effects have been reported for compound (for example, the g-factor)
measures of cognition”. One study found that the relationship between
education and cognitive scores, after controlling for childhood cogni-
tion, involved direct effects on specific cognitive skills, including mem-
ory, rather than being mediated by the g-factor’. Still, we observed
similar associations across several cognitive domains. Finally, although
structural brain change is predictive of memory declineinaging”, other
measures could reveal different relationships.

Conclusion

Inthis large-scale, geographically diverse longitudinal mega-analytic
study, we found that education is related to better episodic memory
and larger intracranial volume and modestly to memory-sensitive brain
regions. These associations are established early inlifeand not driven by
slower brain aging or increased resilience to structural brain changes.
Therefore, effects of education on episodic memory functioninaging
likely originate earlier in life.
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Methods

Theresearch complies with all relevant ethical regulations, and all par-
ticipants provided informed consent. The main project was approved
by the Norwegian Regional Committee for Medical Research Ethics
South (approval no. 8122), and each substudy was approved by the
relevant ethical review board, as specified in Supplementary Table 3.

Samples
SHARE cohort. SHARE is a research infrastructure for studying the
effects of health, social, economic and environmental policies over
the life course of European citizens and beyond (https://share-eric.
eu/)*. SHARE contains observations of individuals from 50 years of
age from 28 countries, recruited to be representative of the population
in each country. Data for the present analyses were extracted from
easySHARE release 8.0.0 (10 February 2022, https://doi.org/10.6103/
SHARE.easy.800); see refs. 76,77 for methodological details.
easySHARE release 8.8.0 is based on SHARE waves |1, 2, 3,4, 5, 6,7 and
8 (https://doi.org/10.6103/SHARE.w1.800, https://doi.org/10.6103/
SHARE.w2.800, https://doi.org/10.6103/SHARE.w3.800, https://doi.
org/10.6103/SHARE.w4.800, https://doi.org/10.6103/SHARE.w5.800,
https://doi.org/10.6103/SHARE.w6.800, https://doi.org/10.6103/
SHARE.w7.800, https://doi.org/10.6103/SHARE.w8.800)**7%, Partici-
pantsincludedintheanalyses participatedin up to six waves of data col-
lection. Intotal, weincluded datafrom 130,880 participants (mean age
64.9 years atbaseline, 50.1-112.0, 59,363 males and 71,517 females), with
an average of 2.7 waves (s.d. =1.63) with a mean maximum follow-up
interval of 6.53 years (0.9-15.9, s.d. =3.93). In total, 352,953 memory
test sessions were included, with two test results (immediate versus
delayed recollection) for each—that is, 705,906 memory scores went
into the analyses. Respondents aged younger than 50 years (individuals
recruited due to being spouses of other participants) were excluded
from the sample. An overview of the age distribution per country is
provided in Fig. 1a. Sample distribution as a function of timepoints,
education category and age is provided in Supplementary Fig. 3.

Memory was assessed with a10-word verbal recall test. The word
listis read outloud to the participants, and thenrecallis tested imme-
diately after the presentation (recall1) and then after adelay of approxi-
mately 5 minutes (recall 2). Multiple versions of the lists are assigned
to the respondents*’. The response distribution is shown in Supple-
mentary Fig. 4. There were no ceiling effects, whichisimportant when
assessing longitudinal change for the best-performing participants.
There were some floor effects for recall 2 but less for recall 1, suggest-
ing that we can estimate longitudinal chance well for most baseline
levels of memory. Because educationis associated with differencesin
memory scores, ceiling and floor effects could potentially obscurereal
differences in change, but this is unlikely to have affected the current
results given the response distribution below. Scores were lower for
delayed thanimmediate recall (odds ratio = 0.535, confidence interval:
0.534-0.537), and females scored higher than males (oddsratio =1.160,
confidenceinterval:1.153-1.168).

In addition to the memory measures, we extracted the variables
age, sex, birth year, education (based on the ISCED 1997) and country
of currentresidency.

MRI cohorts. We combined data from 13 datasets with longitudinal
brain MRIscans and memory assessments: LCBC”®, Betula®*®', UB®**3,
BASE-II*** and Cam-CAN®® datasets (from the Lifebrain consortium)*°
as well as the COGNORM?Y, the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (https://adni.loni.usc.edu)®®, BBHI*, the
Harvard Aging Brain Study (HABS)°, the UK Biobank (https://www.
ukbiobank.ac.uk/)”", PREVENT-AD">%%, OASIS3 (https://sites.wustl.
edu/oasisbrains/)’* and VETSA”. Sample size was maximized for each
analysis and, hence, varies due to dataavailability and missingness (see
Supplementary Table 2 for an overview). Inaddition to cohort-specific
inclusion and exclusion criteria, participants older than 50 years

without cognitive impairment, Alzheimer’s dementia or severe neu-
rological or psychiatric disorders were included. Additionally, MRI data
from scanners with fewer than 15 measurements were also excluded.
Theinitial datasetincluded individuals with 1-14 MRIacquisitions with
longitudinal structural MRI data spanning up to 15.8 years. Similarly,
memory assessments range from one to 24 observations per individual
with a follow-up up to 28 years. For detailed descriptions of general
characteristics of each dataset, see the study-specific citations above.
An overview of each dataset is given in Supplementary Information
(Supplementary Table 1). The main sample descriptives are provided
in Extended Data Table 2, but because the exact sample size varies
somewhat between analyses depending on data availability, the spe-
cific characteristics for the samples used and their age distributions
used to address the different research questions are provided in Sup-
plementary Table 2 and Supplementary Fig. 1.

Education in the brain imaging cohorts. For each dataset, educa-
tion was categorized as high or low using a mean split. We chose this
approach because quantitative distributions of education were often
highly non-Gaussian, and level-based codifications were somewhat
arbitrary due toidiosyncratic reporting of years of education and vari-
ationsinschooling systems across years and country. To ensure robust-
ness, we conducted analyses with an alternative operationalization of
education, categorizingindividuals with or without tertiary education.
When education data were provided as qualifications or categories,
these were converted to years of education based on country-specific
norms. Individuals were then grouped as having high or low educa-
tion based on the median. For the tertiary education categorization,
the reverse process was applied, converting years of education into
education qualifications. For reporting consistency, a lower cap of
6 yearsand an upper cap of 20 years were applied to education years. An
overview of education characteristics for each MRIsample is provided
inSupplementary Table 4 and Supplementary Fig. 2.

Memory function in the brain imaging cohorts. For each sample, we
operationalized memory performance as az-normalized score based
onthefirsttimepointand the different available memory tests. When
multiple scores were available, we used the first component of a PCA
with all measures as inputs. For each dataset, we regressed out age
(asasmoothingterm), sex and one or two dummy test-re-test regres-
sors using GAMMs (‘gamm4’ R package)*. Individual identifiers were
used as random intercepts, and the number of dummy test-re-test
regressors depended on whether the dataset had two or three or more
waves with memory function data. The residuals were used as an esti-
mate of memory function in each observation. An overview of tests
includedinthe memory performance score for each dataset is provided
inSupplementary Table 5.

MRI acquisition and preprocessing. Structural T1-weighted (T1w)
MPRAGE and FSPGR scans were collected using 1.5T and 3T MRl scan-
ners. Information regarding scanners and scanner parameters across
datasets are presented in Supplementary Table 6. We used the longitu-
dinal FreeSurfer version 7.1.0 stream’ for cortical reconstruction and
volumetric segmentation of the structural Tiw scans” *°. For sessions
with multiple scans, data from the scanners were averaged. In brief,
the images were processed using the cross-sectional stream, which
includes the removal of non-brain tissues, Talairach transformation,
intensity correction, tissue and volumetric segmentation, cortical
surface reconstruction and cortical parcellation. Next, an unbiased
within-subject template space based on all cross-sectional images
was created for each participant, using robust, inverse-consistent
registration. The processing of each timepoint was then reinitialized
withcommoninformation from the within-subject templatetoincrease
reliability and statistical power. Except for the Betula dataset, all data
were preprocessed on the Colossus processing cluster, part of the
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Services for Sensitive Data (https://www.uio.no/tjenester/it/forskning/
sensitiv/), University of Oslo. Memory-sensitive brain measures for
each observation were derived using regional loadings based on the
‘Destrieux’ (cortical)'° and ‘aseg’ (subcortical) atlases'”".

Memory-sensitive brain measures. We computed two complemen-
tary measures of brain structure sensitive to memory, capturing dif-
ferentaspects of memory functionin older age. The primary measure
was defined as a longitudinal brain component sensitive to memory
changes inspired by Vidal-Pifieiro et al. (in preparation). The second
measure, for the purpose of assessing the robustness of the results,
was trained on independent scans to detect cross-sectional brain-
memory relationshipsinaging. The components were highly correlated
(r=0.71), both decrease with age (r=—0.67 and r = —0.64, respectively)
andinclude partially overlapping sets of brain regions. The first meas-
ure (brain PC) is optimized to be sensitive to memory changes in aging,
whereas the second (brain LASSO) is optimized to detect also offset
(thatis, baseline) associations. See Supplementary Information for a
full description of LASSO.

Brain PC as a change-based, memory-sensitive measure. This meas-
ure was derived from a sample largely overlapping with that used for
the statistical analyses and the Australian Imaging, Biomarker and
Lifestyle Flagship Study of Ageing in the present work but included
participants down to age older than18 years. Brain PCisbasedona PC
of longitudinal change in 20 cortical thickness and nine subcortical
volume regions. Brain regions were harmonized using a normative
modeling framework'*>'*® with the PCNtoolkit (0.30.post2) in the
Python3 environment'®* (version 3.9.5). This framework offers several
advantages: (1) it is run independently across sites; (2) it can isolate
site effects from other sources of variance associated with it; and (3) it
produces site-agnostic deviation scores (z-statistics) adjusted for age
and sex. PCNtoolkit uses a hierarchical Bayesian regression (HBR) tech-
nique'® and pretrained models from 82 different datasets, including UK
Biobank and Cam-CAN data. To avoid losing longitudinal observations,
we performed this step recursively by iteratively (n =100) holding out a
calibrating sample and computing the estimates on the remaining data.
Theaveragescores of alliterations were used as the standardized scores
foreach observation. Scanners contributing with fewer than12 unique
individuals or fewer than 25 observations were excluded. For scanners
contributing more than 12 and fewer than 32 unique individuals, we
used a calibration sample consisting of all but two participants and
estimate the harmonized scores in these two. For scanners with 32 or
moreuniqueindividuals, we used, ineachiteration, aheld-out sample
of 30 individuals while estimates were applied on the rest.

Next, we selected individuals with at least two observations and
aminimum follow-up of 1.5 years. For both MRIand memory preproc-
essed data, we estimated yearly change for each participant by regress-
ing data on follow-up time. Change data were then fed into separate
linear mixed models as implemented in Ime4 and ImerTest'*'”?, one
perbrainregion. Note that here we used estimates of change, and there
was only one observation per individual. For each region, we predicted
memory change by brain change, using dataset asrandomintercepts.
Additionally, we used weights to account for potential heteroskedastic-
ity. Thatis, individuals with short follow-up periods and fewer observa-
tions contribute with more unreliable, high-variance data and, thus,
should produce anunequal spread of residuals. We used the square of
reliability as weights as estimated in ref. 108. Longitudinal reliability
isafunction of variance in change and mean measurement error fora
givenregion and number of observations and total follow-up time for
agivenindividual. After FDR correction (P < 0.05),29 regions showed
significant associations between brain change and memory change,
including nine volumetric subcortical regions (bilateral amygdala,
hippocampus and thalamus, left lateral and inferior lateral ventricle
and right accumbens area) and 20 cortical thickness regions (left G

cingul-Post-dorsal, G cingul-Post-ventral, Ginsular_short, Goc-temp_
med-Parahip, G front_inf-Opercular, G front_inf-Triangul, G subcal-
losal, Stemporal_sup; right GInsIg&S cent_ins, Scircular_insula_ant, S
oc-temp_med&Lingual, Ssuborbital; bilateral G temp_sup-Plan_polar, S
orbital-H_Shaped, S front_middle, S circular_insula_inf). These regions
were entered into the PCA to extract the PC of the memory-sensitive
brainregions, yielding a brain measure sensitive to episodic memory
change in aging. All regions except the ventricles showed positive
loadings with the brain PC.

Statistics

SHARE. Analyses were performed in R (mostly version 4.2.1 (ref.109))
using the brms package’s"’ interface to the probabilistic programming
language Stan™. To assess effects of education on memory and memory
change, we ran logistic regressions with memory recall as dependent
variable, yielding odds ratios as the most relevant model parameter to
interpret. An odds ratio of 1 corresponds to aregression coefficient of

0.The mainmodel was:

formula=recall|trials (10) ~ test + mo (past tests)
+ sex + country + edu + time_since baseline z:edu +
s (age_at_baseline z,bs="cr") + time_since_
baseline z + age_at _baseline z:time_since_
baseline z + (1|country/mergeid)

Each memory test was used as a separate response, yielding two
observations per timepoint, and the variable ‘test’ represents difficulty
of condition 2 relative to condition 1. To control for practice effects, a
monotonic function of the number of previous tests taken wasincluded
as covariate. We used asmooth function of age to allow nonlinear rela-
tionships. Individual-specific intercepts per participant were nested
within country. Default priors were used for all parameters, and two par-
allel chains of Stan’s No-U-Turn Sampler?were run for 1,500 iterations,
discarding the first 1,000 as warmup. This yielded 1,000 post-warmup
samples. For the offset/level analyses, education (edu) was the variable
of interest, whereas, for the slope/change analyses, edu x time since
baseline was the critical variable. z-transformed variables were used
inthe model fitting for numerical stability, and results were converted
back to their natural units for easier interpretability—for example, age
andtimeinyears.

MRI cohorts. All the analyses were performed using the R environ-
ment (version 4.2.1)'°. Visualizations were made with the ‘ggplot2™"
and ‘ggseg’™* R packages. Memory, brain variables and eTIV were
z-standardized before inclusionin the models. Outlier values defined
asvalues>5s.d.fromthe mean were removed from the analyses. Analy-
ses were run using GAMM models as implemented in the ‘gamm4’ R
package®, unless otherwise specified.

Memory score was modeled as afunction of education, time since
baseline, sex and a dummy regressor for test-re-test effects as fixed
effects. Baseline age by sex was included as a smooth term. Random
intercepts were modeled per participant and dataset, with random
slopes of re-test effects and time from baseline at a dataset level. To test
the effects onmemory change, the model was re-run with an additional
education x time interaction term. Education was operationalized
either asmean-split or based ontertiary educationin separate models.

Brain structure wasmodeled as a function of education, time since
baseline, sexand eTIV as fixed effects. Baseline age by sex was included
as asmooth term. Random intercepts were modeled per participant,
scanner and dataset with random slopes of time included at a dataset
level. To test effects on brain change, the model was re-run with an
additional education x time interaction term. As control analyses, we
re-ran the GAMM models without eTIV as covariate. Additionally, we
ranalinear mixed modelasimplemented inIme4, with eTIV being mod-
eled as a function of education, sex and baseline age as fixed effects,
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and site and dataset were included as random intercepts. Only the
first observation of each participant wasincluded, as eTIV and educa-
tion are time-invariant variables. Alternative operationalizations of
education and brain structure were tested in separate, but otherwise
identical, models.

We used a fuzzy join algorithm, as implemented in ‘fuzzyjoin
to link pairwise MRI and cognitive observations, as these were not
necessarily collected on the same day. MRl observations were matched
with the closest cognitive observations within amaximum time gap of
1year. Unlinked observations were excluded from the analyses. The
relationship among brain, memory level and education was assessed
with several models. ‘Brain level and memory level: Memory was mod-
eled by brain structure, sex, time, eTIV and a dummy regressor for
test-re-test effects as fixed effects. Baseline age by sex was introduced
as asmooth term. Random intercepts were modeled per participant,
scanner and dataset with random slopes of re-test and time modeled
at a dataset level. ‘Brain change and memory change’: An additional
brain x time term was added to the model. ‘Moderating effect of educa-
tion on level-level associations’: Additional terms for education and
education x brainwere added in the first model. ‘Moderating effect of
education on change-change associations’: A triple interaction term
(brain x time x education) as well as its lower-order components were
added in the first model. ‘Control analyses’: A main education term,
withoutanyinteraction, was added to the models to assess level-level
and change-change associations between brain and memory, to test
whether the strength of these associations was affected by education
level. As with other analyses, alternative operationalizations of educa-
tionand memory-sensitive brain structure were tested in separate but
similar models.

7115
’

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Eachdataset has different owners. Contact information to be used for
data access is specified in Supplementary Table 3. Parts of the data
usedin preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.
usc.edu/). As such, the investigators within the ADNI contributed to
the design and implementation of ADNIand/or provided data but did
not participate in the analysis or writing of this report. A complete
listing of ADNIlinvestigators can be found at https://adni.loni.usc.edu/
wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
Moreinformation about the Vietnam Era Twin Study of Aging (VETSA),
includingalist of VETSA investigators, isavailable at https://psychiatry.
ucsd.edu/research/programscenters/vetsa/index.html.
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Extended Data Table 1| Associations among education, memory score and memory score decline

Education level Memory offset Memory change
Odds Ratio Odds Ratio
(CI low - high) (CI low - high)

None 0.54 0.53-0.55 1.004 1.001-1.007
Primary school 0.68 0.67-0.68 1.002 1.001-1.004
Middle school 0.83 0.81-0.83 1.002 1.000-1.003
High school 1 1

Vocational training 1.07 1.05-1.08 1.001 0.998-1.003
Bachelor’s degree 1.31 1.29-1.32 1.001 1.000-1.003
Master’s degree 1.55 1.49-1.60 1.004 0.999-1.010

‘High school’ is used as reference. Memory change (odds ratio per year) results are presented with three decimals to allow inspection of the very weak effects. Confidence interval is 95%.
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Extended Data Table 2 | Sample characteristics for samples with MRI

Dataset Total Total Sex Higher Above Tests pr Education Age Follow- Participants Total Mean MRI Follow-up
participants test Male/Female  education median participant years (baseline) uptime with MRI MRI scans pr. time
sessions (n) education (mean) (mean) sessions  participant between
(n) scans
ADNI 904 3824 405/399 657 438 4.23 16.5 72.5 3.4 768 3315 4.32 3.35
BBHI 596 801 303/293 411 411 1.34 14.6 57.7 0.8 579 766 1.32 0.75
HABS 287 1286 127/160 191 191 4.73 15.7 74.0 3.4 281 673 2.40 3.50
BASE-II 1328 2363 640/688 483 618 1.78 14.2 70.7 3.4 295 505 171 1.46
OASIS-3 647 3169 292/355 396 396 4.90 15.7 72.6 4.5 940 2013 2.14 2.88
ous 114 667 54/60 48 55 5.85 14.6 73.5 5.2 113 388 3.43 4.99
Prevent-AD 306 1057 91/215 134 134 3.45 15.3 63.4 2.1 305 1360 4.43 2.17
uB 160 297 56/104 54 79 1.86 11.2 68.6 1.8 285 418 1.47 0.97
Cam-CAN 34 66 18/26 28 28 1.94 15.2 64.8 5.8 346 486 1.40 0.58
LCBC 185 435 73/112 151 83 2.35 16.5 61.1 5.0 316 758 2.40 3.18
UKB 33623 36212  16335/17288 22791 22791 1.08 14.5 65.4 0.2 1261 2522 2.00 2.25
Betula 139 612 71/68 20 53 4.40 11.1 58.0 16.6 252 501 1.99 4.12
VETSA 1592 3614 1592/0 450 834 2.27 13.9 57.8 7.5 731 1452 1.99 6.09
Total 39915 54403  20057/19858 25814 26111 1.37 14.6 65.5 0.9 6472 15157 2.34 2.81

N, number of unique participants. Higher education: more than high school education.
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could potentially affect the results. Additionally, MRI data from scanners with fewer than 15 measurements were also excluded. This was
done because too few measurements from a scanner sould make it difficult to statistically control for scanner effects. The exclusion criteria
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Memory results from the SHARE data were replicated using memory data from the MRI cohorts. This was done by testing whether education
level was associated with memory offset and memory change in the MRI-cohorts, which were independent from the SHARE cohorts. MRI
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Blinding was not applicable because no experimental manipulation or intervention was done. The analyses were based on data from
observational cohort studies, and all statistical modeling was performed using existing and anonymized data in R. As such, there was no
contact with participants, and the outcome (memory performance) and exposure (education) had already been collected prior to analysis.
Therefore, the potential for bias due to lack of blinding was not relevant to this design.
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Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
wus upplied:

Authentication Deseribe-any-atthentication-procedures for-eachseed-stock tised-or-novel-genotype-generated—Describe-any-experimentstised-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Magnetic resonance imaging

Experimental design

Design type NA (observational study using structural MRI)
Design specifications NA (observational study using structural MRI)

Behavioral performance measures  NA (observational study using structural MRI)

Acquisition
Imaging type(s) T1 weighted structural scans
Field strength 1.5T& 3T
Sequence & imaging parameters The MRI sequences varied between samples. In total, 23 different MRI sequences were used. Exact sequence
parameters are provided in Sl Table 6.
Area of acquisition Whole-brain aquisition
Diffusion MRI [ ] Used X Not used

Preprocessing

Preprocessing software FreeSurferv.7.1.0

Normalization Normalization template = subject-specific unbiased within-subject anatomical average ("base" image). Normalization process
=timepoints are aligned and normalized relative to this base, enhancing consistency and measurement precision. Base
creation: Rigid (6 DOF), robust template. Talairach registration: Affine (12 DOF). Intensity normalization: mri_normalize using

WM.
Normalization template Talairach
Noise and artifact removal mri_normalize used to correct for bias fields, primarily by standardizing white matter intensity. In Ithe ongitudinal analyses

the base template guides normalization to make correction consistent across time. No explicit motion correction is
performed within FreeSurfer itself, but mri_robust_template used for base creation is resilient to moderate motion, using
outlier rejection and robust averaging. WM and GM priors from the base help stabilize segmentation across time. Surface
placement is also initialized from the base, reducing variability.

Volume censoring NA




Statistical modeling & inference

Model type and settings For SHARE, generalized linear models (GLM) with a binomial link were run using memory score as dependent variable, with
the interaction between education and time since baseline as the critical term, using test type (immediate or 5-minute
delay), a monotonic function of the number of previous tests taken (to control for retest effects), education, sex, country,
baseline age, time since baseline, and the age x time interaction as covariates (see Methods for exact specifications).
Individual-specific intercepts per participant were nested within country. Z-transformed values for age and time were used in
the model fitting and converted back to natural units when showing the results. More details provided in the main text. For
the MRI cohorts, First, to be able to study brain changes of relevance to episodic memory, we extracted a brain variable
sensitive to memory change. For each participant, annual change in each of 166 brain regions was calculated and related to
memory change by a series of linear mixed effects models, yielding 29 significant FDR-corrected significant regions (Fig 5A).
These were entered into a PCA, yielding a memory-sensitive brain PC. This PC could then be used to test the specific
hypothesis that high education has protective effects on brain change relevant for episodic memory, and the prediction from
the cognitive reserve theory that highly educated participants would experience less memory decline for a given level of
decline in memory-sensitive brain regions. For replication, we also used machine learning, i.e. a regularized regression model
(LASSO: Least Absolute Shrinkage and Selection Operator), to predict memory based on an independent sample of 28.114
cross-sectional MRIs from UKB (Replication analyses). To test the association between education and brain PC score (offset
effects), a GAMM was run with education, time since baseline, sex, and estimated total intracranial volume (eTIV) as fixed
effects, and baseline age and sex x baseline age as smooth terms. Random intercepts were included per participant, scanner,
and dataset while random slopes of time were included for each dataset.
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Effect(s) tested For SHARE, number of words recalled was each participant’s memory score and used to index episodic memory function.
How scores differed over age for each education category defined the memory trajectory for that category. A smooth
function for age allowed non-linear memory trajectories. Memory offset refers to the cross-sectional differences between
groups, represented by the main effect of education in the GLM. Memory change was defined as change in memory over
time within participants and represented by the ‘time’ term in the model. Differences in memory change between education
groups were represented by the education x time interaction term. The main outputs of the statistical model were the odds
ratios (OR) of remembering a word compared to a reference group. More details provided in the main text. For the MRI
cohorts, output was score on the brain PC in terms of volume or volume change.

Specify type of analysis: [ | whole brain  [X] ROI-based  [_| Both

Regions were defined based on the Destrieux (cortical) and aseg (subcortical) atlases, yielding whole-

Anatomical location(s) brain coverage, yielding 337 features in total (see main text and SI)

Statistic type for inference ROI-wise statistics and machine learning

(See Eklund et al. 2016)

Correction false discovery rate < .05

Models & analysis

n/a | Involved in the study
& |:| Functional and/or effective connectivity

& |:| Graph analysis

& |:| Multivariate modeling or predictive analysis
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